Index fossils are used to determine the relative ages of rock and fossils and are also used to define the boundaries between geologic periods.
<u>Option: A</u>
<u>Explanation:</u>
The fossils which are recognized as fossils guides or indicator fossils are used to classify and recognize geological or faunal periods, termed as index fossils. It must be of short vertical reach, wide geographic distribution and swift patterns in evolution. It helps to assess the rock layers ' age and helps to date other fossils found close and around them. For an instance, Ammonites were abundant in the Mesozoic period between 245 to 65 mya, they have not been found after the Cretaceous era, as they became endangered during the K-T extinction (65 mya).
Answer:
I think it's the most important part in this
Complete question
A 2700 kg car accelerates from rest under the action of two forces. one is a forward force of 1157 newtons provided by traction between the wheels and the road. the other is a 902 newton resistive force due to various frictional forces. how far must the car travel for its speed to reach 3.6 meters per second? answer in units of meters.
Answer:
The car must travel 68.94 meters.
Explanation:
First, we are going to find the acceleration of the car using Newton's second Law:
(1)
with m the mass , a the acceleration and
the net force forces that is:
(2)
with F the force provided by traction and f the resistive force:
(2) on (1):

solving for a:

Now let's use the Galileo’s kinematic equation
(3)
With Vo te initial velocity that's zero because it started from rest, Vf the final velocity (3.6) and
the time took to achieve that velocity, solving (3) for
:


Newton's third law of motion
Explanation:
Newton's third law of motion states that:
<em>"When an object A exerts a force on an object B (action force), then object B exerts an equal and opposite force (reaction force) on object A"</em>
It is important to note that this law is always valid, even when it seems it is not.
Consider for example the gravitational force that the Earth exerts on your body (= your weight). We can say that this is the action force. It may seems that there is no reaction force in this case. However, this is not true: in fact, your body also exerts an equal and opposite force on the Earth, and this is the reaction force. The reason that explains why we don't notice any effect on Earth due to this force is that the mass of the Earth is much larger than your mass, therefore the acceleration produced on the Earth because of the force you apply is negligible.
It is also important to note that the action-reaction pair of forces always act on two different objects, so they never appear in the same free-body diagram.
Learn more about Newton's third law of motion:
brainly.com/question/11411375
#LearnwithBrainly
Your question has been heard loud and clear.
Well it depends on the magnitude of charges. Generally , when both positive charges have the same magnitude , their equilibrium point is towards the centre joining the two charges. But if magnitude of one positive charge is higher than the other , then the equilibrium point will be towards the charge having lesser magnitude.
Now , a negative charge is placed in between the two positive charges. So , if both positive charges have same magnitude , they both pull the negative charge towards each other with an equal force. Thus the equilibrium point will be where the negative charge is placed because , both forces are equal , and opposite , so they cancel out each other at the point where the negative charge is placed. However if they are of different magnitudes , then the equilibrium point will be shifted towards the positive charge having less magnitude.
Thank you