.;;jmbbbvvb nhjmhnjhmnhjmgmjhyg gt vfdxg fbrdhtggdfse
The initial kinetic energy of the car is

Then, the velocity of the car is decreased by half:

so, the new kinetic energy is

So, the new kinetic energy is 1/4 of the initial kinetic energy of the car. Numerically:
Answer:
<h3>It's called Resistance! </h3>
Explanation:
If the ratio is constant over a wide range of voltages, the material is said to "ohmic" material.
Hope it helps!
When the ball starts its motion from the ground, its potential energy is zero, so all its mechanical energy is kinetic energy of the motion:

where m is the ball's mass and v its initial velocity, 20 m/s.
When the ball reaches its maximum height, h, its velocity is zero, so its mechanical energy is just gravitational potential energy:

for the law of conservation of energy, the initial mechanical energy must be equal to the final mechanical energy, so we have

From which we find the maximum height of the ball:

Therefore, the answer is
yes, the ball will reach the top of the tree.
The resulting change in momentum of the system will be +18.6 Ns. The momentum is conserved.
<h3>What is the law of conservation of momentum?</h3>
According to the law of conservation of momentum, the momentum of the body before the collision is always equal to the momentum of the body after the collision.
The given data in the problem is;
m is the mass =6.0 kg
t is the time interval=2 second
From Newton's second law;

From the graph;

The change in the momentum is;

Hence, the resulting change in momentum of the system will be +18.6 Ns.
To learn more about the law of conservation of momentum, refer;
brainly.com/question/1113396
#SPJ1