You must burn 1.17 g C to obtain 2.21 L CO2 at
STP.
The balanced chemical equation is
C+02+ CO2.
Step 1. Convert litres of CO, to moles of CO2.
STP is 0 °C and 1 bar. At STP the volume of 1 mol
of an ideal gas is 22.71 L.
Moles of CO2= 2.21 L CO2 × (1 mol CO2/22.71 L
CO2) = 0.097 31 mol CO2
Step 2. Use the molar ratio of C:CO2 to convert
moles of CO to moles of C
Moles of C= 0.097 31mol CO2 × (1 mol C/1 mol
CO2) = 0.097 31mol C
Step 3. Use the molar mass of C to calculate the
mass of C
Mass of C= 0.097 31mol C × (12.01 g C/1 mol C) =
1.17 g C
It looks as if you are using the old (pre-1982)
definition of STP. That definition gives a value of
1.18 g C.
The answer will be Carbon Molecule
Answer: Moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.
Explanation:
Given: Mass of methane = 146.6 g
As moles is the mass of a substance divided by its molar mass. So, moles of methane (molar mass = 16.04 g/mol) are calculated as follows.

The given reaction equation is as follows.

This shows that 2 moles of hydrogen gives 1 mole of methane. Hence, moles of hydrogen required to form 9.14 moles of methane is as follows.

Thus, we can conclude that moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.