Because the masses that you give are for blocks that are 1 cubic meter in volume, they also serve as the densities for the two metals that you are comparing.
<span>mass = density*volume </span>
<span>volume = (4/3)*pi*r^3 </span>
<span>volume of iron sphere = (4/3)*3.14*0.0201^3 = 3.40*10^-5 m^3 </span>
<span>mass of iron sphere = 7860* 3.40*10^-5 m^3 = 0.27 kg = mass of Aluminum Sphere </span>
<span>Volume of Al Sphere = 0.27/2700 = 9.90*10^-5 m^3 </span>
<span>Radius = cube root (volume / (4/3) / pi) = 2.87 cm. </span>
<span>I did this using the MS calculator, and I'm not 100% sure on the numerical answer, but the process is what you need to do to solve the problem. You should double check my answer.
hope this helped :)
</span>
Answer:

Explanation:
Newton's Law of Universal Gravitation:
- F = force of gravity (N)
- G = gravitational constant

= mass of Object 1 (kg)
= mass of Object 2 (kg)- r = distance between the center of mass (m)
Let's convert our given information to scientific notation:
Now using the gravitational force and the distance between centers of mass that are given, we can plug these into Newton's law:
Remove the units for better readability.
Divide both sides of the equation by the gravitational constant G.
Distribute the power of 2 inside the parentheses.
If we evaluate the left side of the equation, we get:
Multiply both sides of the equation by r.
In order to find the mass of one asteroid, we can use the fact that both asteroids have the same mass, therefore, we can rewrite
as
.
Square root both sides of the equation.
Since m is in units of kg, we can state that the mass of each asteroid is 2.79 * 10⁵ kg.
The answer to your question is A
Answer:
Not acted upon there is no motion
Forces acted upon there is motion
You can refer to the definition stated below:
Newton's first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force. This is normally taken as the definition of inertia. ... If that velocity is zero, then the object remains at rest.
Answer:
c.the spacing between particles increases