Answer:
3
Explanation:
The half-life of a radioactive isotope is the time it takes for the mass of the sample to halve.
This can be rewritten as follows:

where
m(t) is the mass of the sample at time t
m0 is the original mass of the sample
n is the number of half-lives that passed
We see that if we take n=3, the amount of original sample left is

So 3 (3 half-lives) is the correct answer.
Answer:
Make sure everything is organized have a planner it can help
Get rid of all distractions
Listen to music if it helps you concentrate
Have your notes
Being willing to stay focus on what you are doing
Understand what you are doing
And most off all Be Happy and Remain Calm : )
Answer:
The flux is calculated as φ=BAcosθ. The flux is thereforemaximum when the magnetic field vector is perpendicular to theplane of the loop. We may also deduce that the flux is zero whenthere is no component of the magnetic field that is perpendicularto the loop.
when angle is zero then flux is maximium because when angle zerocos is maximium
Answer:
B. 24.2 m/s
Explanation:
Given;
mass of the roller coaster, m = 450 kg
height of the roller coaster, h = 30 m
The maximum potential energy of the roller coaster due to its height is given by;



Therefore, the maximum speed of the roller coaster is 24.2 m/s.
Answer:

Explanation:
A simple pendulum is a system consisting of a mass attached to a string, and oscillating in a periodic motion, back and forth, along an equilibrium position.
The period of a pendulum is the time it takes for the pendulum to complete one oscillation.
The period of a pendulum is given by the equation

where
L is the length of the pendulum
g is the acceleration due to gravity
From the formula, we see that the period of a pendulum does not depend on the mass.
Therefore, the only 2 factors affecting the period of a pendulum are:
- The length of the pendulum: the longer it is, the longer the period of oscillation
- The acceleration due to gravity: the greater it is, the shorter the period of the pendulum