This uses something called <span>Le Chatelier's principle. It states essentially that any stress put upon a system will be corrected.
In more simple terms, it means that in an equilibrium, such as the equation N2(g) + 3H2(g) <=> 2NH3(g), removing a reactant will cause the system to create more of said reactant to compensate for its loss, or adding excess reactant will cause the system to remove some of the added reactant. For future reference, the same principle applies to products in an equilibrium as well.
In this case, hydrogen gas is a reactant, and hydrogen is being removed. According to </span><span>Le Chatelier's principle, the system will shift to create more hydrogen gas. In essence, it will shift in the direction of the hydrogen gas, so there will be a shift toward the reactants.
To clear something up, Keq will not change, as it is a constant value with constant conditions (such as temperature, pressure, etc.).</span>
Answer:
RbF
mgo
nh4cl
because electrons are lost by and element forming a cation and gained by the other element forming an anion and held together by electrostatic forces
Answer:
pH = 12.15
Explanation:
To determine the pH of the HCl and KOH mixture, we need to know that the reaction is a neutralization type.
HCl + KOH → H₂O + KCl
We need to determine the moles of each compound
M = mmol / V (mL) → 30 mL . 0.10 M = 3 mmoles of HCl
M = mmol / V (mL) → 40 mL . 0.10 M = 4 mmoles of KOH
The base is in excess, so the HCl will completely react and we would produce the same mmoles of KCl
HCl + KOH → H₂O + KCl
3 m 4 m -
1 m 3 m
As the KCl is a neutral salt, it does not have any effect on the pH, so the pH will be affected, by the strong base.
1 mmol of KOH has 1 mmol of OH⁻, so the [OH⁻] will be 1 mmol / Tot volume
[OH⁻] 1 mmol / 70 mL = 0.014285 M
- log [OH⁻] = 1.85 → pH = 14 - pOH → 14 - 1.85 = 12.15
Answer is: C. nuclear fission.
Nuclear fission is a nuclear reaction or a radioactive decay where nucleus of atom split into smaller ligher nuclei.
Nuclear fission is exothermic reaction which release large amounts of energy (electromagnetic radiation or as kinetic energy, which heat reactors where fission reaction take place).