Answer:
91.41 g of LiClO₃.
Explanation:
We'll begin by calculating the number of mole of O₂ that occupied 33.8 L. This can be obtained as follow:
22.4 L = 1 mole of O₂
Therefore,
33.8 L = 33.8 L × 1 mole / 22.4 L
33.8 L = 1.51 mole of O₂
Next, the balanced equation for the reaction.
2LiCl + 3O₂ —> 2LiClO₃
From the balanced equation above,
3 moles of O₂ reacted to produce 2 moles of LiClO₃.
Therefore, 1.51 mole of O₂ will react to produce = (1.51 × 2)/3 = 1.01 mole of LiClO₃.
Finally, we shall determine the mass of 1.01 mole of LiClO₃. This can be obtained as follow:
Mole of LiClO₃ = 1.01 mole
Molar mass of LiClO₃ = 7 + 35.5 + (3×16)
= 7 + 35.5 + 48
= 90.5 g/mol
Mass of LiClO₃ =?
Mass = mole × molar mass
Mass of LiClO₃ = 1.01 × 90.5
Mass of LiClO₃ = 91.41 g
Thus, 91.41 g of LiClO₃ were obtained from the reaction.
Boiling point
i hope this helps.
Answer:
google chrome
Explanation:
it is the home button on the top left corner
The rate of the backward reaction increases
Explanation:
It is evident that if the reaction is left to proceed spontaneously, the forward reaction is favored because it results in a decrease in pressure in the system (The total reactants have 5 moles and the products have 3 in total).
Increasing H₂O concentration is then reaction, therefore, stymies the forward reaction and favors the reserves reaction. This is because the reverse reaction will lead to reduced pressure.
Carbon monoxide reacts with hemoglobin of the blood to form carboxyhemoglobin. The absorption of oxygen worsens, oxygen starvation develops. At a lethal dose, death occurs within 20 days.