Use blue litmus paper. This is an indicator that can safely determine whether it is a base or an acid by changing color in response to the substance. This color indicates whether it is an acid or a base. Refer to the pH scale to see if the substance is basic or acidic.
Each Be–Cl bond is polar because the two atoms have different electronegativities. The number of outer atoms (2) and lone pairs on the central atom (0) indicate that this molecule has a linear geometry. The bonds in a linear molecule are symmetric, and so their dipoles cancel out.
Each O–H bond is polar because the two atoms have different electronegativities. The number of outer atoms (2) and lone pairs on the central atom (2) indicate that this molecule has a bent geometry. The bonds in a bent molecule are asymmetric, and so their dipoles do not cancel out. In addition, the asymmetric arrangement of the lone pairs on O further contribute to the dipole of this molecule.
An O–O or O=O bond is nonpolar because the two atoms have the same electronegativity. Because there is no overall polarity in O2, the molecule is nonpolar.
Probably true because chemicals do control weed and it hurts the environment.
Answer:
Explanation:
To calculate the cell potential we use the relation:
Eº cell = Eº oxidation + Eº reduction
Now in order to determine which of the species is going to be oxidized, we have to remember that the more the value of the reduction potential is negative, the greater its tendency to be oxidized is. In electrochemistry we use the values of the reductions potential in the tables for simplicity because the only thing we need to do is change the sign of the reduction potential for the oxized species .
So the species that is going to be oxidized is the Aluminium, and therefore:
Eº cell = -( -1.66 V ) + 0.340 V = 5.06 V
Equally valid is to write the equation as:
Eº cell = Eº reduction for the reduced species - Eº reduction for the oxidized species
These two expressions are equivalent, choose the one you fell more comfortable but be careful with the signs.
Answer:
An elementary particle can be one of two groups: a fermion or a boson. Fermions are the building blocks of matter and have mass, while bosons behave as force carriers for fermion interactions and some of them have no mass. The Standard Model is the most accepted way to explain how particles behave, and the forces that affect them. According to this model, the elementary particles are further grouped into quarks, leptons, and gauge bosons, with the Higgs boson having a special status as a non-gauge boson.