Answer:
2

Explanation:
Half-life


Concentration
![{[A]_0}_A=1.2\ \text{M}](https://tex.z-dn.net/?f=%7B%5BA%5D_0%7D_A%3D1.2%5C%20%5Ctext%7BM%7D)
![{[A]_0}_B=0.6\ \text{M}](https://tex.z-dn.net/?f=%7B%5BA%5D_0%7D_B%3D0.6%5C%20%5Ctext%7BM%7D)
We have the relation
![t_{1/2}\propto \dfrac{1}{[A]_0^{n-1}}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%5Cpropto%20%5Cdfrac%7B1%7D%7B%5BA%5D_0%5E%7Bn-1%7D%7D)
So
![\dfrac{{t_{1/2}}_A}{{t_{1/2}}_B}=\left(\dfrac{{[A]_0}_B}{{[A]_0}_A}\right)^{n-1}\\\Rightarrow \dfrac{2}{4}=\left(\dfrac{0.6}{1.2}\right)^{n-1}\\\Rightarrow \dfrac{1}{2}=\left(\dfrac{1}{2}\right)^{n-1}](https://tex.z-dn.net/?f=%5Cdfrac%7B%7Bt_%7B1%2F2%7D%7D_A%7D%7B%7Bt_%7B1%2F2%7D%7D_B%7D%3D%5Cleft%28%5Cdfrac%7B%7B%5BA%5D_0%7D_B%7D%7B%7B%5BA%5D_0%7D_A%7D%5Cright%29%5E%7Bn-1%7D%5C%5C%5CRightarrow%20%5Cdfrac%7B2%7D%7B4%7D%3D%5Cleft%28%5Cdfrac%7B0.6%7D%7B1.2%7D%5Cright%29%5E%7Bn-1%7D%5C%5C%5CRightarrow%20%5Cdfrac%7B1%7D%7B2%7D%3D%5Cleft%28%5Cdfrac%7B1%7D%7B2%7D%5Cright%29%5E%7Bn-1%7D)
Comparing the exponents we get

The order of the reaction is 2.
![t_{1/2}=\dfrac{1}{k[A]_0^{n-1}}\\\Rightarrow k=\dfrac{1}{t_{1/2}[A]_0^{n-1}}\\\Rightarrow k=\dfrac{1}{2\times 1.2^{2-1}}\\\Rightarrow k=0.4167\ \text{M}^{-1}\text{min}^{-1}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D%5Cdfrac%7B1%7D%7Bk%5BA%5D_0%5E%7Bn-1%7D%7D%5C%5C%5CRightarrow%20k%3D%5Cdfrac%7B1%7D%7Bt_%7B1%2F2%7D%5BA%5D_0%5E%7Bn-1%7D%7D%5C%5C%5CRightarrow%20k%3D%5Cdfrac%7B1%7D%7B2%5Ctimes%201.2%5E%7B2-1%7D%7D%5C%5C%5CRightarrow%20k%3D0.4167%5C%20%5Ctext%7BM%7D%5E%7B-1%7D%5Ctext%7Bmin%7D%5E%7B-1%7D)
The rate constant is 
Statement that when two elements combine with each other to from more than one compound, the weights of one element that combine with a fixed weight of the other are in a ratio of small whole numbers.
Power is defined in a mathematical expression as P = F x v where F is in N and v is in m/s. From the given equation, the v = d/t which is v = 10/ 6, then substituting the answer to the power formula W = 54 N (10/6 m/s) = 90 Watts.
To completely convert 9. 0 moles of hydrogen gas (h2) to ammonia gas, 3.0 moles of nitrogen gas (n2) are required.
<h3>What are moles?</h3>
The mole is a SI unit of measurement that is used to calculate the quantity of any substance.
<h3 />
The given reaction is 
By the stoichiometry rule of ratio hydrogen: nitrogen
3 : 1
The reacted moles of nitrogen is equals to H/3 moles of reacted hydrogen
So, moles of nitrogen

Thus, 3.0 moles of nitrogen gas (n2) are required.
Learn more about moles
brainly.com/question/26416088
#SPJ4