Answer:
Explanation:
Depending upon the relative arrangements of XandY X a n d Y , the square planar molecule AX3Y A X 3 Y shows only the following structure: Hence, only one structure is possible for a square planar molecule with a formula of AX3Y A X 3 Y .
Answer:
pH of resulting solution = 7.98
Explanation:
The balanced equation
HA + NaOH - Na+ + A- + H2O
Number of moles of A = Number of moles of HA = Number of moles of NaOH
= 35.8/1000 * 0.020 = 0.000716 mol
Initial concentration of A = 0.000716/0.0608 = 0.01178 M
pKb = 14 – pKa = 14 -3.9 = 10.1
Kb = 10^{-Kb} = 10^{-10.1} = 7.943 * 10^-11
Kb = [HA][OH-]/[A-]
Kb = a^2/(0.01178 -a) = 7.943 * 10^-11
a^2 + 7.943 * 10^-11 a – 9.357 * 10^-13 = 0
a = 9.673 * 10^-7
OH- = a = 9.673 * 10^-7 M
pOH = -log [OH-] = -log (9.673 * 10^-7) = 6.02
pH = 14-6.02 = 7.98
A. Large atoms have valence electrons farther from the nucleus and lose them more readily, so they are more reactive than small atoms.
For example, the valence electron of a small atom like Li is tightly held. <em>Lithium gently fizzes</em> on the surface as it reacts with the water to produce hydrogen.
In contrast, the valence electron of a large atom like Cs is so loosely held that <em>cesium exlodes </em>on contact with water.
Answer:
510 g NO₂
General Formulas and Concepts:
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
- Reading the Periodic Table
- Writing Compounds
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
6.7 × 10²⁴ molecules NO₂ (Nitrogen dioxide)
<u>Step 2: Define conversions</u>
Avogadro's Number
Molar Mass of N - 14.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of NO₂ - 14.01 + 2(16.00) = 46.01 g/mol
<u>Step 3: Use Dimensional Analysis</u>
<u />
= 511.901 g NO₂
<u>Step 4: Check</u>
<em>We are given 2 sig figs. Follow sig fig rules.</em>
511.901 g NO₂ ≈ 510 g NO₂
20 grams is probably the mass