I think it might be A. I’m sorry if I’m wrong
Answer:
The individual positive plate capacity is 85 Ah.
(D) is correct option.
Explanation:
Given that,
Number of plates = 15
Capacity = 595 Ah
We need to calculate the individual positive plate capacity in motive power cell
We have,
15 plates means 7 will make pair of positive and negative.
So, there are 7 positive cells individually.
The capacity will be

Put the value into the formula


Hence, The individual positive plate capacity is 85 Ah.
Answer:
She is likely to crash because her flight gradient is lesser than the flight gradient required gradient to avoid crashing
Explanation:
The given parameters are;
The required gradient of the plane Ashley is flying needs to reach in order to take off and not crash = 360 m/km
The initial elevation of the plane Ashley is flying = Sea level = 0 m
The goal Ashley intends to make = Elevation of 1000 m at 2.8 km. distance
∴ Ashley's goal = Traveling from sea level to 1000 m at 2.8 km horizontal distance
We have;
The gradient = Rate of change of elevation/(Horizontal distance)
Therefore;
The gradient of Ashley's flight = (1000 - 0)/(2.8 - 0) = 357.143 m/km
The gradient of Ashley's flight ≈ 357.143 m/km which is lesser than the required 360 m/km in order to take off and not crash, therefore, she will crash.
To solve this problem it is necessary to apply the concepts related to the Rotational Force described from the equilibrium and Newton's second law.
When there is equilibrium, the Force generated by the tension is equivalent to the Force of the Weight. However in rotation, the Weight must be equivalent to the Centrifugal Force and the tension, in other words:

Where
Angular velocity is equal to the Period, at this case Earth's period
Radius of the Earth
m = mass
= Force of Tension
Newton's second law
Replacing and re-arrange to find the Tension we have,






Therefore when Sneezy is on the equator he is in a circular orbit with a Force of tension of 503.26N
Answer:
θ₂ = 35.26°
Explanation:
given,
refractive index of air, n₁ = 1
refractive index of glass, n₂ = 1.5
angle of incidence, θ₁ = 60°
angle of refracted light, θ₂ = ?
using Snell's Law
n₁ sin θ₁ = n₂ sin θ₂
1 x sin 60° = 1.5 sin θ₂
sin θ₂ = 0.577
θ₂ = sin⁻¹(0.577)
θ₂ = 35.26°
Hence, the refracted light is equal to θ₂ = 35.26°