It is boiling point for celsius
Since density would be D=M/V, we’d have to literally divide 20 by 4.
20 divided by 4 is 5, so the density of the mineral sample is 5 grams.
Please correct me if I am wrong!
Answer:
C. The initial momentum should be equal to the final momentum due to the conservation of momentum.

Since m/(M+m) < 1, v_1 > v_0.
Explanation:
Wrong -> A. Since the smaller particle still moves after the collision, it has a kinetic energy.
Wrong -> B. The total initial momentum is equal to the momentum of the smaller particle. Therefore, the momentum of the objects that stuck together is equal to that of the smaller object.
Wrong -> D. Since the bigger object is initially at rest and the surface is frictionless, the direction of motion will be the same as the direction of the smaller particle.
For the answer to the question above, first find out the gradient.
<span>m = rise/run </span>
<span>=(y2-y1)/(x2-x1) </span>
<span>the x's and y's are the points given: "After three hours, the velocity of the car is 53 km/h. After six hours, the velocity of the car is 62 km/h" </span>
<span>(x1,y1) = (3,53) </span>
<span>(x2,y2) = (6,62) </span>
<span>sub values back into the equation </span>
<span>m = (62-53)/(6-3) </span>
<span>m = 9/3 </span>
<span>m = 3 </span>
<span>now we use a point-slope form to find the the standard form </span>
<span>y-y1 = m(x-x1) </span>
<span>where x1 and y1 are any set of point given </span>
<span>y-53 = 3(x-3) </span>
<span>y-53 = 3x - 9 </span>
<span>y = 3x - 9 + 53 </span>
<span>y = 3x + 44 </span>
<span>y is the velocity of the car, x is the time.
</span>I hope this helps.
Bigger change in velocity because the object is lighter than the object with more mass so it would move further (sorry it’s not a great explanation)