The velocity of the red ball after the collision is 5.8 m/s
Explanation:
In absence of external forces on the system, we can apply the principle of conservation of momentum. The total momentum of the system must be conserved before and after the collision, so we can write:
where:
is the mass of the pool ball
is the initial velocity of the pool ball
is the final velocity of the pool ball
is the mass of the red ball
is the initial velocity of the red ball
is the final velocity of the red ball
Solving the equation for v2, we find the final velocity of the red ball after the collision:
Learn more about collisions:
brainly.com/question/13966693#
brainly.com/question/6439920
#LearnwithBrainly
Ah for this problem you are thinking quite a bit hard on. The problem is actually simpler than it looks. The problem states that a bike travels at a constant speed of 3.1 m/s for 6 s and asks how far will it go?. To figure this out you simply need to take 3.1 times 6 s because every second the bike travels 3.1 m. So the answer to this problem would be 18.6 m
Answer:
Gravitational tugs from orbiting planets don't affect the motion of a star. The star, being much larger than the planet, has a much smaller orbit. But it does move slightly. Explain how alien astronomers could deduce the existence of planets in our solar system by observing the Sun's motion.
A molecule, would be the correct answer