Answer:
it's says potential that something not moving.
incorrectly cutting ties or securing devices because
this is so dangerous thing I know because being electrocuted is here this for me.
Answer:
Q = 63,827.5 W
Explanation:
Given:-
- The dimensions of plate A = ( 10 mm x 1 m )
- The fluid comes at T_sat , 1 atm.
- The surface temperature, T_s = 75°C
Find:-
Determine the total condensation rate of water vapor onto the front surface of a vertical plate
Solution:-
- Assuming drop-wise condensation the heat transfer coefficient for water is given by Griffith's empirical relation for T_sat = 100°C.
h = 255,310 W /m^2.K
- The rate of condensation (Q) is given by Newton's cooling law:
Q = h*As*( T_sat - Ts )
Q = (255,310)*( 0.01*1)*( 100 - 75 )
Q = 63,827.5 W
Answer:
<em>the % recovery of aluminum product is 80.5%</em>
<em>the % purity of the aluminum product is 54.7%</em>
<em></em>
Explanation:
feed rate to separator = 2500 kg/hr
in one hour, there will be 2500 kg/hr x 1 hr = 2500 kg of material is fed into the machine
of this 2500 kg, the feed is known to contain 174 kg of aluminium and 2326 kg of rejects.
After the separation, 256 kg is collected in the product stream.
of this 256 kg, 140 kg is aluminium.
% recovery of aluminium will be = mass of aluminium in material collected in the product stream ÷ mass of aluminium contained in the feed material
% recovery of aluminium = 140kg/174kg x 100% = <em>80.5%</em>
% purity of the aluminium product = mass of aluminium in final product ÷ total mass of product collected in product stream
% purity of the aluminium product = 140kg/256kg
x 100% = <em>54.7%</em>
Answer:
D.) Transfer input energy from the power source throughout the machine.
Explanation:
Since the complex abnormalities of energy efficiency is depicted by the autonomy within self-operating machines, the correct answer is D.
Answer:
The correct/closest option is b
Explanation:
Restriction enzymes are enzymes (endonucleases) that cut short DNA strands at specific sites. Hence, each restriction enzyme has it's own specific site (between two bases) it cuts at. There are two types of end that can be produced by this cut; the blunt end and the sticky end.
A restriction enzyme recognizes (palindromic sequence) and cut in it's own specific end.
For example, if a restriction enzyme cuts between a guanine (G) and an adenine (A), and it cuts a palindromic double stranded DNA in the manner below, it produces a sticky end.
G║AATTC
CTTAA║G
And if a restriction enzyme cuts between guanine (G) and cytosine (C) in the manner below, it produces a blunt end.
GGG║CCC
CCC║GGG
Hence, from the question, restriction enzymes (although chosen by the scientist based on desired sequence to be cut) recognize the sticky or blunt ends itself.