1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lord [1]
3 years ago
10

A 2 in. diameter pipe supplying steam at 300°F is enclosed in a 1 ft square duct at 70°F. The outside of the duct is perfectly i

nsulated. Assume the emissivity of pipe surface and duct surfaces as 0.79 and 0.276, respectively. Estimate the radiation heat transfer per foot length.
Engineering
1 answer:
Shkiper50 [21]3 years ago
4 0

Answer:

The value of heat transferred watt per foot length Q = 54.78 Watt per foot length.

Explanation:

Diameter of pipe = 2 in = 0.0508 m

Steam temperature T_{1} = 300 F  = 422.04 K

Duct temperature T_{2} = 70 F = 294.26 K

Emmisivity of surface 1 = 0.79

Emmisivity of surface 2 = 0.276

Net emmisivity of both surfaces ∈ = 0.25

Stefan volazman constant \sigma = 5.67 × 10^{-8} \frac{W}{m^{2} K^{4}  }

Heat transfer  per foot length is given by

Q = ∈ \sigma A ( T_{1}^{4} - T_{2} ^{4} ) ------ (1)

Put all the values in equation (1) , we get

Q = 0.25 × 5.67 × 10^{-8} × 3.14 × 0.0508 × 1 × ( 422.04^{4} - 294.26^{4} )

Q = 54.78 Watt per foot.

This is the value of heat transferred watt per foot length.

You might be interested in
A commuter train traveling at 50 mi/h is 3 mi from a station. The train then decelerates so that its speed is 15 mi/h when it is
jonny [76]

Answer:

a) t = 277.477\,s\,(4.625\min), b) v_{f} = 0\,\frac{mi}{h}, c) a = -0.128\,\frac{ft}{s^{2}}

Explanation:

a) The deceleration experimented by the commuter train in the first 2.5 miles is:

a=\frac{[(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot (\frac{1\,h}{3600\,s} )]^{2}-[(50\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot (\frac{1\,h}{3600\,s} )]^{2}}{2\cdot (2.5\,mi)\cdot (\frac{5280\,ft}{1\,mi} )}

a = -0.185\,\frac{ft}{s^{2}}

The time required to travel is:

t = \frac{(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,fi} )\cdot(\frac{1\,h}{3600\,s} )-(50\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,fi} )\cdot(\frac{1\,h}{3600\,s} )}{-0.185\,\frac{ft}{s^{2}} }

t = 277.477\,s\,(4.625\min)

b) The commuter train must stop when it reaches the station to receive passengers. Hence, speed of train must be v_{f} = 0\,\frac{mi}{h}.

c) The final constant deceleration is:

a = \frac{(0\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot(\frac{1\,h}{3600\,s} )-(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot(\frac{1\,h}{3600\,s} )}{(2.875\,min)\cdot (\frac{60\,s}{1\,min} )}

a = -0.128\,\frac{ft}{s^{2}}

7 0
4 years ago
Water vapor at 6 MPa, 600 degrees C enters a turbine operating at steady state and expands to 10kPa. The mass flow rate is 2 kg/
kirill115 [55]

Answer:

Explanation:

Obtain the following properties at 6MPa and 600°C from the table "Superheated water".

h_1=3658.8KL/Kg\\s_1=7.1693kJ/kg.k

Obtain the following properties at 10kPa from the table "saturated water"

h_{f2}=191.81KJ/Kg.K\\h_{fg2}=2392.1KJ/Kg\\s_{f2}=0.6492KJ/Kg.K\\s_{fg2}=7.4996KJ/Kg.K

Calculate the enthalpy at exit of the turbine using the energy balance equation.

\frac{dE}{dt}=Q-W+m(h_1-h_2)

Since, the process is isentropic process Q=0

0=0-W+m(h_1-h_2)\\h_2=h_1-\frac{W}{m}\\\\h_2=3658.8-\frac{2626}{2}\\\\=2345.8kJ/kg

Use the isentropic relations:

s_1=s_{2s}\\s_1=s_{f2}+x_{2s}s_{fg2}\\7.1693=6492+x_{2s}(7.4996)\\x_{2s}=87

Calculate the enthalpy at isentropic state 2s.

h_{2s}=h_{f2}+x_{2s}.h_{fg2}\\=191.81+0.87(2392.1)\\=2272.937kJ/kg

a.)

Calculate the isentropic turbine efficiency.

\eta_{turbine}=\frac{h_1-h_2}{h_1-h_{2s}}\\\\=\frac{3658.8-2345.8}{3658.8-2272.937}=0.947=94.7%

b.)

Find the quality of the water at state 2

since h_f at 10KPa <h_2<h_g at 10KPa

Therefore, state 2 is in two-phase region.

h_2=h_{f2}+x_2(h_{fg2})\\2345.8=191.81+x_2(2392.1)\\x_2=0.9

Calculate the entropy at state 2.

s_2=s_{f2}+x_2.s_{fg2}\\=0.6492+0.9(7.4996)\\=7.398kJ/Kg.K

Calculate the rate of entropy production.

S=\frac{Q}{T}+m(s_2-s_1)

since, Q = 0

S=m(s_2-s_1)\\=2\frac{kg}{s}(7.398-7.1693)kJ/kg\\=0.4574kW/k

6 0
4 years ago
I’m doing a project on renewable energy. There are 6 energy sources. Solar, wind, geothermal, hydroelectric, tidal, and biomass.
nalin [4]

Answer:

"Biofuels"

Explanation:

I don't know if this counts but I guess it's not one of those.

6 0
3 years ago
Read 2 more answers
How much cornfield area would be required if you were to replace all the oil consumed in the United States with ethanol from cor
zaharov [31]

Answer:

2377.35 km

Explanation:

Given the following;

1. A cornfield is 1.5% efficient at converting radiant energy into stored chemical potential energy;

2. The conversion from corn to ethanol is 17% efficient;

3. A 1.2:1 ratio for farm equipment to energy production

4. A 50% growing season and,

5. 200 W/m2 solar insolation.

As per our assumptions,1.2/1 is the ratio for farm equipment to energy production,

So USA need around 45.45% (1/(1+1.2) replacement of fuel energy production which is nearly about = 0.4545*10^{20} J/year = \frac{0.4545*10^{20}}{365*24*3600}=1.44121*10^{12} J/sec

Growing season is only part of year ( Given = 50%),

Net efficiency = 1.5%*17%*50%=0.015*0.17*0.5=0.001275 = 0.1275%

Hence , Actual Energy replacement (Efficiency),

=\frac{1.44121*10^{12}}{0.001275} = 1.13*10^{15} J/sec=1.13*10^{15} W

As per assumption (5),

\because 200 W/m2 solar insolation arequired,

So USA required corn field area = 1.13*10^{15}/200 = 5.65*10^{12} m^{2}

Hence, length of each side of a square,

= (5.65*10^{12} )^{0.5} = 2377.35 km

4 0
3 years ago
Answer the following either true (T) or false (F) (5 pts)
likoan [24]

Answer:

1. True

2. True

3. False

Explanation:

The office location is where the soil layer is not uniform. The thickness of the soil varies which could lead to doors being jammed. The engineer needs to estimate the differential in clay soil.

The inclined surface can hold less weight than a vertical surface. The capacity to hold the weight is due to the gravitational force which is exerted to the load.

6 0
3 years ago
Other questions:
  • Explain the use of the Kanban system in a production line?
    7·1 answer
  • With increases in magnification, which of the following occur? a. The field of view decreases. b. The ambient illumination decre
    9·1 answer
  • What kind of value should an employee possess when employees are expected to be responsible and fair?
    5·1 answer
  • 1. How does manufacturing help strengthen<br> the economy?
    15·1 answer
  • 1. The area of the given triangle is 25 square units. What is the value of x?<br> X+2
    8·1 answer
  • Can a real refrigerator have higher COP than the COP of the Carnot refrigerator?
    7·2 answers
  • What is the uncertainty in position of an electron of an atom if there is t 2.0 x 10' msec uncertainty in its velocity? Use the
    12·1 answer
  • i need jacket for my daughter who will be going on a girls scouts camping trip it cannot be bulky because she is limited to one
    8·2 answers
  • What is a beam on a bridge? what does it do?
    6·1 answer
  • What are the BENEFITS and RISKS of using automobiles?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!