Explanation:
There are two ways to find out the equivalent impulse response of the system.
1. Convolution in time domain
2. Simple multiplication in Laplace domain
2nd method is efficient, easy and is less time consuming.
Step 1: Take the Laplace transform of the given three impulse response functions to convert time domain signals into s-domain
Step 2: Once we get signals in s-domain, multiply them algebraically to get the equivalent s-domain response.
Step 3: Take inverse Laplace transform of the equivalent impulse response to convert from s-domain into time domain.
Solution using Matlab:
Step 1: Take Laplace Transform
Ys1 = 1/(s + 1)
Ys2 = 1/s - exp(-s/2)/s
Ys3 = exp(-3*s)
Step 2: Multiplication in s-domain
Y = (exp(-(7*s)/2)*(exp(s/2) - 1))/(s*(s + 1))
Step 3: Inverse Laplace Transform (Final Solution in Time Domain)
h = heaviside(t - 7/2)*(exp(7/2 - t) - 1) - heaviside(t - 3)*(exp(3 - t) - 1)
Answer:
532235w3r35w3r
Explanation:
ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?ysis ?
Answer:
Heater power = 425 watts
Explanation:
Detailed explanation and calculation is shown in the image below
Answer:
see explaination
Explanation:
import java.util.InputMismatchException;
import java.util.Scanner;
public class calculate {
static float a=0,b=0;
double cal()
{
if(a==0||b==0)
{
System.out.println("no values found in a or b");
start();
}
double x=(a*a)+(b*b);
double h=Math.sqrt(x);
a=0;
b=0;
return h;
}
float enter()
{
float val=0;
try
{
System.out.println("Enter side");
Scanner sc1 = new Scanner(System.in);
val = sc1.nextFloat();
return val;
}
catch(InputMismatchException e)
{
System.out.println("Enter correct value");
}
return val;
}
void start()
{
calculate c=new calculate();
while(true)
{
System.out.println("Enter Command");
Scanner sc = new Scanner(System.in);
String input = sc.nextLine();
switch(input)
{
case "A":
a=c.enter();
break;
case "B":
b=c.enter();
break;
case "C":
double res=c.cal();
System.out.println("Hypotenuse is : "+res);
break;
case "Q":
System.exit(0);
default:System.out.println("wrong command");
}
}
}
public static void main(String[] args) {
calculate c=new calculate();
c.start();
}
}
Answer:
The elastic modulus of the steel is 139062.5 N/in^2
Explanation:
Elastic modulus = stress ÷ strain
Load = 89,000 N
Area of square cross section of the steel bar = (0.8 in)^2 = 0.64 in^2
Stress = load/area = 89,000/0.64 = 139.0625 N/in^2
Length of steel bar = 4 in
Extension = 4×10^-3 in
Strain = extension/length = 4×10^-3/4 = 1×10^-3
Elastic modulus = 139.0625 N/in^2 ÷ 1×10^-3 = 139062.5 N/in^2