1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lord [1]
3 years ago
10

A 2 in. diameter pipe supplying steam at 300°F is enclosed in a 1 ft square duct at 70°F. The outside of the duct is perfectly i

nsulated. Assume the emissivity of pipe surface and duct surfaces as 0.79 and 0.276, respectively. Estimate the radiation heat transfer per foot length.
Engineering
1 answer:
Shkiper50 [21]3 years ago
4 0

Answer:

The value of heat transferred watt per foot length Q = 54.78 Watt per foot length.

Explanation:

Diameter of pipe = 2 in = 0.0508 m

Steam temperature T_{1} = 300 F  = 422.04 K

Duct temperature T_{2} = 70 F = 294.26 K

Emmisivity of surface 1 = 0.79

Emmisivity of surface 2 = 0.276

Net emmisivity of both surfaces ∈ = 0.25

Stefan volazman constant \sigma = 5.67 × 10^{-8} \frac{W}{m^{2} K^{4}  }

Heat transfer  per foot length is given by

Q = ∈ \sigma A ( T_{1}^{4} - T_{2} ^{4} ) ------ (1)

Put all the values in equation (1) , we get

Q = 0.25 × 5.67 × 10^{-8} × 3.14 × 0.0508 × 1 × ( 422.04^{4} - 294.26^{4} )

Q = 54.78 Watt per foot.

This is the value of heat transferred watt per foot length.

You might be interested in
Which one of the following faults cause the coffee in a brewer to keep boiling after the brewing cycle is finished?
MrRa [10]

Answer:

  C.  Welded contacts on the thermostat

Explanation:

Any fault that keeps the heating element heating when it should not is a fault that will cause the symptom described. The details <em>depend on the design of the brewer</em> (not given).

"A short at the terminals" depends on what terminals are being referenced. The device on-off switch terminals are normally connected together when the brewer is turned on, so a short there may not be observable.

"Welded contacts on the thermostat" will have the observed effect if the thermostat is the primary means of ending the brewing cycle. If the thermostat of interest is an overheat protective device not normally involved in ending the brewing cycle, then that fault may not cause the observed symptom.

__

If the heating element is open-circuit, no heating will occur. A gasket leak may cause a puddle, but may have nothing to do with the end of the brewing cycle. (Loss of water can be expected to end boiling, rather than prolong it.)

8 0
3 years ago
1. (5 pts) An adiabatic steam turbine operating reversibly in a powerplant receives 5 kg/s steam at 3000 kPa, 500 °C. Twenty per
KiRa [710]

Answer:

temperature of first extraction 330.8°C

temperature of second extraction 140.8°C

power output=3168Kw

Explanation:

Hello!

To solve this problem we must use the following steps.

1. We will call 1 the water vapor inlet, 2 the first extraction at 100kPa and 3 the second extraction at 200kPa

2. We use the continuity equation that states that the mass flow that enters must equal the two mass flows that leave

m1=m2+m3

As the problem says, 20% of the flow represents the first extraction for which 5 * 20% = 1kg / s

solving

5=1+m3

m3=4kg/s

3.

we find the enthalpies and temeperatures in each of the states, using thermodynamic tables

Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)  

through prior knowledge of two other properties

4.we find the enthalpy and entropy of state 1 using pressure and temperature

h1=Enthalpy(Water;T=T1;P=P1)

h1=3457KJ/kg

s1=Entropy(Water;T=T1;P=P1)

s1=7.234KJ/kg

4.

remembering that it is a reversible process we find the enthalpy and the temperature in the first extraction with the pressure 1000 kPa and the entropy of state 1

h2=Enthalpy(Water;s=s1;P=P2)

h2=3116KJ/kg

T2=Temperature(Water;P=P2;s=s1)

T2=330.8°C

5.we find the enthalpy and the temperature in the second extraction with the pressure 200 kPav y the entropy of state 1

h3=Enthalpy(Water;s=s1;P=P3)

h3=2750KJ/kg

T3=Temperature(Water;P=P3;s=s1)

T3=140.8°C

6.

Finally, to find the power of the turbine, we must use the first law of thermodynamics that states that the energy that enters is the same that must come out.

For this case, the turbine uses a mass flow of 5kg / s until the first extraction, and then uses a mass flow of 4kg / s for the second extraction, taking into account the above we infer the following equation

W=m1(h1-h2)+m3(h2-h3)

W=5(3457-3116)+4(3116-2750)=3168Kw

7 0
2 years ago
8.19 - Airline Reservations System (Project Name: Airline) - A small airline has just purchased a computer for its new automated
e-lub [12.9K]

Answer:

The App is written in C++ language using dev C++.

Explanation:

/******************************************************************************

You can run this program in any C++ compiler like dev C++ or any online C++ compiler

*******************************************************************************/

#include <iostream>

using namespace std;

class bookingSeat// class for airline reservation system

{

  private:

   

   

  bool reserveSeat[10];// 10 seats (1-5) for first class and 6-10 for economy class

  int firstClassCounter=0;//count first class seat

  int economyClassCounter=5;//count economy class seat

  char seatPlacement;/* switch between economy and first clas seat----- a variable for making decision based on user input*/

  public:  

  void setFirstClassSeat()//

  {

      if(firstClassCounter<5)// first class seat should be in range of 1 to 5

      {

          reserveSeat[firstClassCounter]=1; /*set first class seat..... change index value to 1 meaning that it now it is reserved*/

          cout<<"Your First Class seat is booked and your seat no is "<<firstClassCounter+1; //display seat number reserved

          firstClassCounter++; //increament counter

      }

      else//in case seats are ful

      {

          cout<<"\nSeats are full";

          if(economyClassCounter==10 && firstClassCounter==5)

          {

              cout<<"\n Next flight leaves in 3 hours.";

          }

          else

          {

              cout<<"\nIt’s acceptable to be placed to you in the first-class section  y/n ";//take input from user

              cin>>seatPlacement;//user input

              if(seatPlacement=='y')//if customer want to reserve seat in first class

              {

                  setEconomyClassSeat();// then reserve first class seat

              }

              else

              {

                  cout<<"\n Next flight leaves in 3 hours.";

               }

               

          }

      }

       

  }

  void setEconomyClassSeat()//set economy class seat

  {

    if(economyClassCounter<10)//seat ranges between 6 and 10

      {

          reserveSeat[economyClassCounter]=1;// reserve economy class seat

          cout<<"Your Economy class seat is booked and your seat no is "<<economyClassCounter+1;//display reservation message about seat

          economyClassCounter++;//increament counter

      }

      else// if economy class seats are fulled

      {

          cout<<"\nSeats are full";

          if(economyClassCounter==10 && firstClassCounter==5)//check if all seats are booked in both classes

          {

              cout<<"\n Next flight leaves in 3 hours.";

          }

          else

          {

              cout<<"\nIt’s acceptable to be placed to you in the first-class section  y/n ";//take input from user

              cin>>seatPlacement;//user input

              if(seatPlacement=='y')//if customer want to reserve seat in first class

              {

                  setFirstClassSeat();// then reserve first class seat

              }

              else

              {

                  cout<<"\n Next flight leaves in 3 hours.";

               }

               

          }

      }

  }

   

   

};

int main()

{   int checkseat=10;// check seat

   int classType;//class type economy or first class

   bookingSeat bookseat;//object declaration of class bookingSeat

   while(checkseat<=10)//run the application until seats are fulled in both classes

   {

       cout<<"\nEnter 1 for First Class and 2 for Economy Class ";

       cin>>classType;//what user entered

       switch (classType)//decide which seat class to be reserved  

       {

           case 1://if user enter 1 then reserve first class seat

           bookseat.setFirstClassSeat();

           break;

           case 2://if user enter 2 then reserve the economy class seat

           bookseat.setEconomyClassSeat();

           

       }

       

   }

   

   return 0;

}

8 0
2 years ago
A cylindrical drill with radius 4 is used to bore a hole through the center of a sphere of radius 5. Find the volume of the ring
ANTONII [103]

Answer:

The volume of the ring shaped solid that remains is 21 unit^3.

Explanation:

The total volume of the sphere is given as:

Volume of Sphere = (4/3)πr^3

where, r = radius of sphere

Volume of Sphere = (4/3)(π)(5)^3

Volume of Sphere = 523.6 unit^3

Now, we find the volume of sphere removed by the drill:

Volume removed = (Cross-sectional Area of drill)(Diameter of Sphere)

Volume removed = (πr²)(D)

where, r = radius of drill = 4

D = diameter of sphere = 2*5 = 10

Therefore,

Volume removed = (π)(4)²(10)

Volume removed = 502.6 unit^3

Therefore, the volume of ring shaped solid that remains will be the difference between the total volume of sphere, and the volume removed.

Volume of Ring = Volume of Sphere - Volume removed

Volume of Ring = 523.6 - 502.6

<u>Volume of Ring = 21 unit^3</u>

5 0
3 years ago
Joe Bruin has a big lawn in front of his house that is 30 meters wide and 20 meters long. Josephine makes him go out and mow the
zysi [14]

<u>Explanation:</u>

5 Horsepower for 30 mins,

(5)(745.7) = 3.7285 KW power delivered

General Efficiency of IC engine = 20%

Power required = \frac{3 \cdot 7285}{0 \cdot 2}=18 \cdot 6425 kw

Energy required per week,

=P × Time = 18.64 × 60 × 30 = 33.5565 MJ

Lawn area = (30) (20) = 600m^{2}

let sunlight hours be 8 hours

Hence, solar power input on lawn,

=5.62×3600 = 20232 kJ/m^{2}/day

energy input in lawn = (600) (20232) (7)

                                  = 84974.4 mJ/week

Chemical efficiency by photosynthesis = 4%

Chemical content in grass = (84974.4) (0.04)

                                            = 3398.97 mJ

Mass of the clippers  \(=(30)(20)(1 \cdot 096)^{2}(667)\)

                                  \(=478632 \cdot 33\) pounds

Removing water content,

dried grass clippings \(=95726.46\) pound

                                    = 11533.25 gallons

Trash cans repaired  

                                     =\frac{11533}{50} =230.66\\=231 cans

By burning the gas, total energy input = 3398.97 MJ × 0.2

                                                                = 679.794 MJ

Efficiency of steeling engine  =  20%

Energy output by engine = 679.794 ×0.2

                                          = 135.96 mJ

Energy required by mover = 33.5565 mJ

Hence, Energy (output) ⇒ energy required

5 0
2 years ago
Other questions:
  • At the instant shown, slider block B is moving with a constant acceleration, and its speed is 150 mm/s. Knowing that after slide
    13·1 answer
  • 1 2 3 4 5 6 7 8 9 10
    14·1 answer
  • For a brass alloy, the following engineering stresses produce the corresponding plastic engineering strains prior to necking:
    9·1 answer
  • (2 points) A perfectly mixed aeration pond with no recycle serves as the biological reactor for a small community. The pond rece
    15·1 answer
  • What are atomic bombs made out of <br> Just wondering
    10·1 answer
  • I need help due today please help
    5·1 answer
  • An engine has a piston with a surface area of 17.31 in2 and can travel 3.44 inches. What is the potential change in volume, disp
    10·1 answer
  • 1. A flywheel is suspended by resting the inside of the rim on a horizontal knife edge so that the wheel can swing in a vertical
    5·1 answer
  • Quelles sont les types de carburant utilisés en aviation
    15·1 answer
  • What is the hardest part of engineering?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!