The precipitate that is most likely formed from a solution containing Ba+2, Li+, OH-1, and CO3^-2 is BaCO3.
This is because carbonates of all metals except sodium, Lithium potassium (group 1) and ammonium are insoluble in water. Hydroxides of sodium, Lithium, potassium and ammonium are very soluble in water, calcium and barium are moderately soluble. Ba(CO3) is insoluble in water and therefore forms a precipitate.
A change in the force of gravity on an object will affect its weight.
I think its B but im not sure...
Answer:
7.38 g/cm³ is the density of the metal
Explanation:
In a Face-centered cubic unit cell you have 4 atoms. Also, the edge length is √8×r (r is radius of the atom).
To solve this problem, we need first to calculate the volume of the unit cell and then, with molar mass calculate the mass of 4 atoms. As density is the ratio between mass and volume we can obtain this value.
- <em>Volume of the unit cell</em>
Volume = a³
a = √8×r
(r = 198x10⁻¹²m)
a = 5.6x10⁻¹⁰ m
Volume = 1.756x10⁻²⁸ m³
1m = 100cm → 1m³ = (100cm)³:
1.756x10⁻²⁸ m³× ((100cm)³ / 1m³) =
<h3> 1.756x10⁻²² cm³ → Volume of the unit cell in cm³</h3><h3 />
- <em>Mass of the unit cell:</em>
<em>There are 4 atoms of gold:</em>
4 atoms × (1mol / 6.022x10²³ atoms) = 6.64x10⁻²⁴ moles of gold
As 1 mole weighs 195.08g:
6.64x10⁻²⁴ moles of gold × (195.08g / mol) =
<h3>1.296x10⁻²¹g is the mass of the unit cell</h3><h3 />
- <em>Density of the metal:</em>
1.296x10⁻²¹g / 1.756x10⁻²² cm³ =
<h3>7.38 g/cm³ is the density of the metal</h3>