The rate constant is mathematically given as
K2=2.67sec^{-1}
<h3>What is the Arrhenius equation?</h3>
The rate constant for a particular reaction may be calculated with the use of the Arrhenius equation. This constant can be stated in terms of two distinct temperatures, T1 and T2, as follows:

Therefore
KT1= 0.0110^{-1}
T1= 21+273.15
T1= 294.15K
T2= 200
T2=200+273.15
T2= 473.15K
Ea= 35.5 Kj/Mol
Hence, in j/mol R Ea is
Ea=35.5*1000 j/mol R

K2/0.0110 =e^(5.492)
K2/0.0110 =242.74
K2= 242.74*0.0110
K2=2.67sec^{-1}
In conclusion, rate constant
K2=2.67sec^{-1}
Read more about rate constant
brainly.com/question/20305871
#SPJ1
If you start with 40.0 grams of the element at noon, 10.0 grams
radioactive element will be left at 2 p.m. The correct answer between
all the choices given is the second choice or letter B. I am hoping that this
answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.
SOLVENT- A substance (usually a liquid) capable of dissolving one or more pure substances. SOLUTE- Solid, liquid or gas that is dissolved in a solvent. SOLUTION- A homogeneous (looks the same throughout) mixture of a solvent and one or more solutes. AQUEOUS SOLUTION- Solution in which water is the solvent.
Answer
it raises the boiling point substance is dissolved in water