Answer:
T = 4.42 10⁴ N
Explanation:
this is a problem of standing waves, let's start with the open tube, to calculate the wavelength
λ = 4L / n n = 1, 3, 5, ... (2n-1)
How the third resonance is excited
m = 3
L = 192 cm = 1.92 m
λ = 4 1.92 / 3
λ = 2.56 m
As in the resonant processes, the frequency is maintained until you look for the frequency in this tube, with the speed ratio
v = λ f
f = v / λ
f = 343 / 2.56
f = 133.98 Hz
Now he works with the rope, which oscillates in its second mode m = 2 and has a length of L = 37 cm = 0.37 m
The expression for standing waves on a string is
λ = 2L / n
λ = 2 0.37 / 2
λ = 0.37 m
The speed of the wave is
v = λ f
As we have some resonance processes between the string and the tube the frequency is the same
v = 0.37 133.98
v = 49.57 m / s
Let's use the relationship of the speed of the wave with the properties of the string
v = √ T /μ
T = v² μ
T = 49.57² 18
T = 4.42 10⁴ N
Answer:
Shear stress, force tending to cause deformation of a material by slippage along a plane or planes parallel to the imposed stress. The resultant shear is of great importance in nature, being intimately related to the downslope movement of earth materials and to earthquakes.
Answer:
a = 1600 m / s²
Explanation:
For this exercise we use the kinematics relations,
v² = v₀² + 2 a x
where v₀ is the initial velocity of the bullet, which as part of rest is zero, for the distance (x) we can assume that the gases accelerate along the entire trajectory of the cannon x = 2m
a = 
let's calculate
a =
a = 1600 m / s²
Answer: 0.067 s
Explanation:s = Ut + 1/2at^2
0.6 = 9t + 0.5 *10 *t^2
Where a = g =10m/s/s
Solving the quadratic equation
5t^2 + 9t - 0.6=0,
t= 0.067 s and - 1.7 s
Of which 0.067 s is a valid time
The highest point of a wave is called the crest. Among the choices, the correct answer is C. The height of the wave can be determined using the crest and the trough. The trough is the lowest point of a wave. The wavelength is the distance between two crests of a wave.