<em><u>One</u></em><em><u> </u></em><em><u>newton</u></em><em><u> </u></em><em><u>force</u></em><em> </em><em>is</em><em> </em><em>defined as t</em><em>h</em><em>e</em><em> </em><em>force</em><em> </em><em>that</em><em> </em><em>is</em><em> necessary to provide a mass of one kilogram with an acceleration of one metre per second per second. One newton is equal to a force of 100,000 dynes in the centimetre-gram-second (CGS) system, or a force of about 0.2248 pound </em><em>i</em><em>n</em><em> </em><em>the</em><em> </em><em>f</em><em>o</em><em>o</em><em>t</em><em>-</em><em>p</em><em>o</em><em>u</em><em>n</em><em>d</em><em>-</em><em> </em><em>s</em><em>e</em><em>c</em><em>o</em><em>n</em><em>d</em><em> </em><em>system</em><em>.</em>
Answer:
(D) energy from one place to another
67.8 turns needed by the secondary coil to run the bulb.
<u>Explanation</u>:
We know that,



For calculating number of turns

Given that,



We need to find the number of turns in the secondary winding
to run the bulb at 120W 
Firstly find the secondary voltage in the transformer use, 






Now, finding the number of turns in secondary coil. Use, 




The number of turns in the secondary winding are 67.8 turns.
Answer:
3331.5 kg
Explanation:
Given:
Spring constant of the spring (k) = 24200 N/m
Frequency of oscillation (f) = 0.429 Hz
Let the mass be 'm' kg.
Now, we know that, a spring-mass system undergoes Simple Harmonic Motion (SHM). The frequency of oscillation of SHM is given as:

Rewrite the above equation in terms of 'm'. This gives,

Now, plug in the given values and solve for 'm'. This gives,

Therefore, the mass of the truck is 3331.5 kg.
Answer:
Electric field by charged disk is given as
E = (Charge Density/2u0)*[1 - (z/sqrt(z^2 - R^2))]
R = 9.54cm = 0.0954m, z = 1.01m, Charge density = 4.07 x 10^-6C/m2, e0 = 8.85 x 10^-12F/m.
Substituting all the values in to equation,
E = (2.299 x 10^5) x (8.931 x 10^-3)
E = 2.053 x 10^3N/C
Explanation: