Answer:
The answer is D.
Explanation:
They both orbit around the sun so they are similar in that way.
Answer:
a) I = (
+
) L² , b) w = (\frac{27 M}{18 m} + 2)⁻¹ Lv₀
Explanation:
a) The moment of inertia is a scalar that represents the inertia in circular motion, therefore it is an additive quantity.
The moment of inertia of a rod held at one end is
I₁ = 1/3 M L²
The moment of inertia of the mass at y = L
I₂ = m y²
The total inertia method
I = I₁ + I₂
I = \frac{1}{3} M L² + m (\frac{2}{3} L)²
I = (
+
) L²
b) The conservation of angular momentum, where the system is formed by the masses and the bar, in such a way that all the forces during the collision are internal.
Initial instant. Before the crash
L₀ = I₂ w₀
angular and linear velocity are related
w₀ = y v₀
w₀ =
L v₀
L₀ = I₂ y v₀
Final moment. After the crash
= I w
how angular momentum is conserved
L₀ = L_{f}
I₂ y v₀ = I w
substitute
m (
)² (\frac{2L}{3} v₀ = (
+
) L² w
m L³ v₀ = (
+
) L² w
m L v₀ = (
+
) w
L v₀ =
w
w = (\frac{27 M}{18 m} + 2)⁻¹ Lv₀
thank you so much for the schlatt
If you have a runny nose then the mucus will block the path that smell goes through. So if you are trying to smell a flower then you will have a hard time because the mucus is in the way, or blocking the entrance path. Hope this helps:)
May I please have brainliest?