Answer:
67.824
Explanation: You want to use the combined gas law equation (P1*V1)/(n1*T1)=(P2*V2)/(n2*T2). So first cross out what remains constant, so volume(V) and I assume moles (since it was not mentioned as a change). Then you can solve algebraically for the answer!
Hope this helped!
Answer:


Explanation:
In this case, since neon could be considered as an ideal gas, the specific volumes at the first and second state are respectively:


Thus, the change in the specific volume turns out:

Which value has sense for the compression.
In addition, the specific enthalpy change just depend on the temperature as it is an ideal gas, therefore, since the process es isothermic:

Best regards.
Answer:
The answer to the question above is
The energy required to heat 87.1 g acetone from a solid at -154.0°C to a liquid at -42.0°C = 29.36 kJ
Explanation:
The given variables are
ΔHfus = 7.27 kJ/mol
Cliq = 2.16 J/g°C
Cgas = 1.29 J/g°C
Csol = 1.65 J/g°C
Tmelting = -95.0°C.
Initial temperature = -154.0°C
Final temperature = -42.0°C?
Mass of acetone = 87.1 g
Molar mass of acetone = 58.08 g/mol
Solution
Heat required to raise the temperature of solid acetone from -154 °C to -95 °C or 59 °C is given by
H = mCsolT = 87.1 g* 1.65 J/g°C* 59 °C = 8479.185 J
Heat required to melt the acetone at -95 °C = ΔHfus*number of moles =
But number of moles = mass÷(molar mass) = 87.1÷58.08 = 1.5
Heat required to melt the acetone at -95 °C =1.5 moles*7.27 kJ/mol = 10.905 kJ
The heat required to raise the temperature to -42 degrees is
H = m*Cliq*T = 87.1 g* 2.16 J/g°C * 53 °C = 9971.21 J
Total heat = 9971.21 J + 10.905 kJ + 8479.185 J = 29355.393 J = 29.36 kJ
The energy required to heat 87.1 g acetone from a solid at -154.0°C to a liquid at -42.0°C is 29.36 kJ
HNO2 is the formula for Nitrous Acid
<span>Hi, friend.
Steepest - Being steep to the greatest degree.
Steep - S</span>harply angled.
Example: When hiking trails lead straight up mountainsides, they've got a steep incline.
Hope this helps!