Answer:
See explanation below.
Explanation:
Dipoles are molecules that have partial charges. It happens because of the difference in electronegativity of the elements. This property is the tendency that the atom has to take the electron to it, so, in the covalent bond, the shared pair of electrons is easily found at the more electronegativity atom, and so, it has a partial negative charge, and the other, a partial positive charge. This is a natural dipole.
If the difference of electronegativity is 0, or extremely close to 0, then the molecule is nonpolar, and so the molecule doesn't have partial charges. But, to be joined together and form the substance, the partial charge must be induced, so it's an induced dipole.
Answer:
Mass = 1274 .64 g it would be option C if it is converted into kilogram
1274 .64 / 1000 = 1.27 Kg
Explanation:
Given data:
Number of moles of C₂₀H₄₂ = 4.52 mol
Molar mass of carbon = 12 g/mol
Molar mass of hydrogen = 1.0 g/mol
Mass of C₂₀H₄₂ = ?
Solution:
Number of moles = mass / molar mass
Molar mass = 20× 12 + 42× 1.0 = 282 g/mol
Now we will put the values in formula:
Number of moles = mass / molar mass
4.52 mol = mass / 282 g /mol
Mass = 4.52 mol × 282 g/mol
Mass = 1274 .64 g
Nitrogen can form a diatomic molecule held together by triple bonds.
The correct option is A.
To calculate the binding energy, you have to find the mass defect first.
Mass defect = [mass of proton and neutron] - Mass of the nucleus
The molar mass of thorium that we are given in the question is 234, the atomic number of thorium is 90, that means the number of neutrons in thorium is
234 - 90 = 144.
The of proton in thourium is 90, same as the atomic number.
Mass defect = {[90 * 1.00728] +[144* 1.00867]} - 234
Note that each proton has a mass of 1.00728 amu and each neutron has the mass of 1.00867 amu.
Mass defect = [90.6552 + 145.24848] - 234 = 1.90368 amu.
Note that the unit of the mass is in amu, it has to be converted to kg
To calculate the mass in kg
Mass [kg] = 1.90368 * [1kg/6.02214 * 10^-26 = 3.161135 * 10^-27
To calculate the binding energy
E = MC^2
C = Speed of light constant = 2.9979245 *10^8 m/s2
E = [3.161135 * 10^-27] * [2.9979245 *10^8]^2
E = 2.84108682069 * 10^-10.
Note that we arrive at this answer because of the number of significant figures that we used.
So, from the option given, Option A is the nearest to the calculated value and is our answer for this problem.
Molecular are only between non-metals. Ionic has a higher melting point