The answer is actually Water Splitting! Hope this works:D
1.53 moles of Fe is your solution hope it helps!
Answer:
pH = 2.69
Explanation:
The complete question is:<em> An analytical chemist is titrating 182.2 mL of a 1.200 M solution of nitrous acid (HNO2) with a solution of 0.8400 M KOH. The pKa of nitrous acid is 3.35. Calculate the pH of the acid solution after the chemist has added 46.44 mL of the KOH solution to it.</em>
<em />
The reaction of HNO₂ with KOH is:
HNO₂ + KOH → NO₂⁻ + H₂O + K⁺
Moles of HNO₂ and KOH that react are:
HNO₂ = 0.1822L × (1.200mol / L) = <em>0.21864 moles HNO₂</em>
KOH = 0.04644L × (0.8400mol / L) = <em>0.0390 moles KOH</em>
That means after the reaction, moles of HNO₂ and NO₂⁻ after the reaction are:
NO₂⁻ = 0.03900 moles KOH = moles NO₂⁻
HNO₂ = 0.21864 moles HNO₂ - 0.03900 moles = 0.17964 moles HNO₂
It is possible to find the pH of this buffer (<em>Mixture of a weak acid, HNO₂ with the conjugate base, NO₂⁻), </em>using H-H equation for this system:
pH = pKa + log₁₀ [NO₂⁻] / [HNO₂]
pH = 3.35 + log₁₀ [0.03900mol] / [0.17964mol]
<h3>pH = 2.69</h3>
In an undisturbed sequence of layers of rocks, the younger layers lie on top of the older layers
The balanced chemical reaction is:
<span>2H2O= 2H2 + O2
</span>
We are given the amount of oxygen to be produced in the reaction. The starting point for the calculations will be this amount.
50 g ( 1 mol O2 / 32 g O2 ) ( 2 mol H2O / 1 mol O2 ) ( 18.01 g H2O / 1 mol H2O) = 56.28 g of H2O is needed.
Therefore, the correct answer is the last option.