Answer:
12.9 m³ is the new volume
Explanation:
As the temperature keeps on constant, and the moles of the gas remains constant too, if we decrease the pressure, the volume will increase. If the volume is decreased, pressure will be higher.
The relation is this: P₁ . V₁ = P₂ . V₂
1 atm . 0.93m³ = 0.072 atm . V₂
0.93m³ .atm / 0.072 atm = V₂
V₂ = 12.9 m³
In conclusion and as we said, pressure has highly decreased so volume has highly increased.
<u>Answer:</u> The
for the reaction is 72 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)

(2)
( × 2)
(3)
( × 2)
The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times (\Delta H_1)]+[2\times (-\Delta H_2)]+[2\times (\Delta H_3)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%28%5CDelta%20H_1%29%5D%2B%5B2%5Ctimes%20%28-%5CDelta%20H_2%29%5D%2B%5B2%5Ctimes%20%28%5CDelta%20H_3%29%5D)
Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-1184))+(2\times -(-234))+(2\times (394))]=72kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-1184%29%29%2B%282%5Ctimes%20-%28-234%29%29%2B%282%5Ctimes%20%28394%29%29%5D%3D72kJ)
Hence, the
for the reaction is 72 kJ.
<u>Answer:</u> The molarity of calcium hydroxide in the solution is 0.1 M
<u>Explanation:</u>
To calculate the concentration of base, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is 
We are given:

Putting values in above equation, we get:

Hence, the molarity of
in the solution is 0.1 M.
It’s the first 1 M yea it’s the first one
Answer:
Plants will absorb water through their roots and release water as vapor into the air through these stomata. To survive in drought conditions, plants need to decrease transpiration to limit their water loss. Some plants that live in dry conditions have evolved to have smaller leaves and therefore fewer stomata.
Explanation:
Plants will absorb water through their roots and release water as vapor into the air through these stomata. To survive in drought conditions, plants need to decrease transpiration to limit their water loss. Some plants that live in dry conditions have evolved to have smaller leaves and therefore fewer stomata.