Answer: the rider’s pedal force must be greater than friction and the force of gravity
Explanation:
This is because if the pedal force was less, you would go slower, and it is obviously not impossible to ride up a hill without increasing speed. But if the force was greater, your speed would increase.
Answer:
A) Concentration of A left at equilibrium of we started the reaction with [A] = 2.00 M and [B] = 2.00 M is 0.55 M.
B) Final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 M and [B] = 2.00 M is 0.90 M.
[D] = 0.90 M
Explanation:
With the first assumption that the volume of reacting mixture doesn't change throughout the reaction.
This allows us to use concentration in mol/L interchangeably with number of moles in stoichiometric calculations.
- The first attached image contains the correct question.
- The solution to part A is presented in the second attached image.
- The solution to part B is presented in the third attached image.
Answer:
The time taken by missile's clock is 
Solution:
As per the question:
Speed of the missile, 
Now,
If 'T' be the time of the frame at rest then the dilated time as per the question is given as:
T' = T + 1
Now, using the time dilation eqn:




(1)
Using binomial theorem in the above eqn:
We know that:

Thus eqn (1) becomes:


Now, putting appropriate values in the above eqn:


<span>According to the formula :
</span><span>a=<span><span>ΔV / </span><span>ΔT
</span></span></span><span>When a body is moving with a uniform velocity, the acceleration is zero. That's it. You should remember, that velocity is not constant whereas speed is constant.</span>