Answer:
3.4 × 10^23 molecules
Explanation:
To find the number of molecules present in C6H14, we multiply the number of moles in the compound by Avagadro's number (6.02 × 10^23 atoms).
number of molecules = number of moles (mol) × 6.02 × 10^23?
Number of molecules = 0.565 × 6.02 × 10^23
3.4 × 10^23 molecules
Answer:
See explanation and image attached
Explanation:
This reaction is known as mercuric ion catalyzed hydration of alkynes.
The first step in the reaction is attack of the mercuric ion on the carbon-carbon triple bond, a bridged intermediate is formed. This bridged intermediate is attacked by water molecule to give an organomercury enol. This undergoes keto-enol tautomerism, proton transfer to the keto group yields an oxonium ion, loss of the mercuric ion now gives equilibrium keto and enol forms of the compound. The keto form is favoured over the enol form.
The number of atoms of each element :
C : 1 atom
H : 3 atoms
Br = 1 atom
<h3>Further explanation</h3>
Given
Bromomethane-CH₃Br
Required
The number of atoms
Solution
The empirical formula is the smallest comparison of atoms of compound forming elements.
A molecular formula is a formula that shows the number of atomic elements that make up a compound.
The number of atoms in a compound is generally indicated as a subscript after the atom
C : 1 atom
H : 3 atoms
Br = 1 atom
Total 5 atoms
Replacement I think, hope this helps ;)
Explanation:
Answer: D) It conducts electricity when it is dissolved in water