Answer:
t=40s,
Explanation:
If you can swim in still water at 0.5m/s, the shortest time it would take you to swim from bank to bank across a 20m wide river, if the water flows downstream at a rate of 1.5m/s, is most nearly:
from the question the swimmer will have a velocity which is equal to the sum of the speed of the water and the velocity to swi across the bank
Vt=v1+v2
the time is takes to swim across the bank will be
DY=Dv*t
DY=distance across the bank
Dv=ther velocity of the swimmer across the bank
t=20/ 0.5m/s,
t=40s, time it takes to swim across the bank
velocity is the rate of displacement
displacement is distance covered in a specific direction
Answer: A.AB
Explanation:
This Velocity vs Time graph shows the acceleration of a body or object, since acceleration is the variation of velocity in time.
As we can see in the attached image, the graph can be divided in four segments:
OA: In this segment the acceleration is changing at a uniform rate. In addition we can see it has a positive slope, hence we are dealing with a positive uniform acceleration.
AB: In this segment the acceleration is changing at a nonuniform rate, since in this part it is not possible to calculate the slope. However if this were uniform, the slope woul be positive. This means the <u>acceleration is nonuniform and positive.</u>
BC: In this segment the acceleration is changing at a nonuniform rate, since in this part it is not possible to calculate the slope. However if this were uniform, the slope woul be negative. This means the acceleration is nonuniform and negative.
CD: In this segment the acceleration is changing at a uniform rate. In addition we can see it has a negative slope, hence we are dealing with a negative uniform acceleration.
From all these segments, the only one that fulfils the nonuniform positive acceleration condition is option A:
Segment AB
Answer:
hub9hybygbgybgybgygybsbgydgbydxbgbyxdgbyxdyggdxygbyxdgybzgbydbgyzsbgydgbyzdgxbybgydzs
Explanation: