Answer:
2.145×10^-10 V or 0.2145nV
Explanation:
From hf=eV
h= Plank's constant = 6.6×10^-34JS
f= frequency of the electromagnetic wave = 5.2×10^4 Hz
e= electronic charge= 1.6×10^-19 C
V= voltage
V= hf/e
V= 6.6×10^-34JS × 5.2×10^4 Hz/ 1.6×10^-19 C
V= 2.145×10^-10 V or 0.2145nV
Therefore the voltage created is 2.145×10^-10 V or 0.2145nV
Answer:
Option A is correct.
(The faster object encounters more resistance)
Explanation:
Option A is correct. (The faster object encounters more resistance)
Air resistance depends on various factors:
- Speed of the object
- Cross-sectional area of the object
- Shape of the object
Formula:

As the speed of the object increases the amount of Air resistance/drag increases on the object, as the above formula shows direct relation between Air resistance/drag and velocity i.e F ∝ v^2.
Answer:
3.98V
Explanation:
Given
Pontential difference V as 3v
Energy delivered is 30%,
Recall that Enery E=1/2cv^2 from this E=V^2(since Current C is not provided we can assume a value 2)
So E=V^2
E=3^2=9
At full charge E=9,30%of 9,0.3*9=2.7 energy in capacitor is 9-2.7=6.3
But E=V^2
✓E=V
✓6.3=3.98V
Answer:
V1 =8.1 m/s
Explanation:
height at highest point (h2) = 4.1 m
height at lowest point (h1) = 0.8 m
acceleration due to gravity (g) = 9.8 m/s^{2}
from conservation of energy, the total energy at the lowest point will be the same as the total energy at the highest point. therefore
mgh1 +
= mgh2 + 
where
- speed at highest point = V2
- speed at lowest point = V1
- mass of the girl and swing = m
- at the highest point, the speed is minimum (V1 = 0)
- at the lowest point the speed is maximum (V2 is the maximum speed)
- therefore the equation becomes mgh1 +
= mgh2
m(gh1 +
) = m(gh2)
gh1 +
= gh2
V1 = 
now we can substitute all required values into the equation above.
V1 = 
V1 = 
V1 =8.1 m/s