Answer: Pedaling your bike : acceleration :: applying the brakes : inertia.
The reason I think this to be the answer to the analogy is because there is energy and work used in both processes (and the unit focuses on forces); gravity is constant and does not change whether one pedals or applies brakes. And I do not think it's deceleration, as deceleration tends to equate to acceleration within the physics perspective.
Edit: I should also add that since you clarified that your unit is motion and forces, Newtons 1st law is the law of inertia. The way to change an objects motion for it to slow down is by applying an additional force. That resistance the bike experiences to slow is the process of inertia. Inertia happens in order to accelerate an object (either by slowing it down, or speeding it up): i.e., the resistance to change.
Gravitational potential energy = mass x acceleration due to gravity x height
GPE=mgh
4620=mx9.81x8.4
4620/(9.81x8.4)=m=56.1 kg
As charges move in a closed loop, they gain as much energy as they lose.
<h3>What is principle of
conservation of energy?</h3>
- According to the principle of conservation of energy, in a closed or isolated system, the total energy of the system is always conserved.
- The energy gained by the particles or charges in a closed system is equal to the energy lost by the charges.
Thus, we can conclude the following based on principles of conservation of energy;
- As charges move in a closed loop, they gain as much energy as they lose.
Learn more about conservation of energy here: brainly.com/question/166559
The photon can be absorbed and the energy of the photon is exactly equal to the energy-level difference between the ground state and the level d.
Answer:
33.516 kJ
Explanation:
Potential energy is given by:
PE = mgh
Where m is the mass, g is acceleration due to gravity, and h is the height. In this case:
PE = 38kg x 9.8m/s^2 x 90m = 33516 kg m^2/s^2 = 33516 J = 33.516 kJ