The ans is A. 355 m/s as temperature is above stp
1. What is the force of the marble?
For an object near the surface of the earth, the gravitational force acting upon the object is given by:
F = mg
F is the gravitational force, m is the object's mass, and g is the acceleration of objects due to earth's gravity.
Given values:
m = 0.025kg, g = 9.8m/s²
Plug in the given values and solve for F:
F = 0.025×9.8
F = 0.25N
2. What is the marble's potential energy at the start of its fall?
The gravitational potential energy of an object near the earth's surface is given by:
PE = mgh
PE is the potential energy, m is the object's mass, g is the acceleration of objects due to earth's gravity, and h is the object's relative height.
new given values:
h = 0.08m
Since F = mg, you can simply multiply F×h to get PE. Use the result from question 1:
PE = F×h
PE = 0.25×0.08
PE = 0.02J
Answer:
The rocket has to be launched 8 m from the hoop
Explanation:
Let's analyze this problem, the rocket is on a car that moves horizontally, so the rocket also has the same speed as the car; The initial horizontal rocket speed is (v₀ₓ = 3.0 m/s).
On the other hand, when starting the engines we have a vertical force, which creates an acceleration in the vertical axis, let's use Newton's second law to find this vertical acceleration
F -W = m a
a = (F-mg) / m
a = F/m -g
a = 7.0/0.500 - 9.8
a = 4.2 m/s²
We see that we have a positive acceleration and that is what we are going to use in the parabolic motion equations
Let's look for the time it takes for the rocket to reach the height (y = 15m) of the hoop, when the rocket fires its initial vertical velocity is zero (I'm going = 0)
y =
t + ½ a t²
y = 0 + ½ a t²
t = √ 2y/a
t = √( 2 15 / 4.2)
t = 2.67 s
This time is also the one that takes in the horizontal movement, let's calculate how far it travels
x = v₀ₓ t
x = 3 2.67
x = 8 m
The rocket has to be launched 8 m from the hoop
I had the SAME problem, put down Radiation and it’s thermal/light.