Answer:
Option A; V = 2.92 L
Explanation:
If we assume a lot of things, like:
The gas is an ideal gas.
The temperature is constant.
The gas does not interchange mass with the environment.
Then we have the relation:
P*V = n*R*T = constant.
Where:
P = pressure
V = volume
n = number of moles
R = constant of the ideal gas
T = temperature.
We know that when P = 0.55 atm, the volume is 5.31 L
Then:
(0.55 atm)*(5.31 L) = constant
Now, when the gas is at standard pressure ( P = 1 atm)
We still have the relation:
P*V = constant = (0.55 atm)*(5.31 L)
(1 atm)*V = (0.55 atm)*(5.31 L)
Now we only need to solve this for V.
V = (0.55 atm/ 1 atm)*(5.31 L) = 2.92 L
V = 2.92 L
Then the correct option is A.
Answer: 600 kJ
-
Explanation:
C₃H₈ (g) + 5 O₂ (g) =============== 3 CO₂ (g) + 4 H₂O (l)
Δ⁰Hf kJ/mol -104 0 -393.5 -285.8
Δ⁰Hcomb C₃H₈ = 3(-393.5) + 4 (-285.80) - (-104) kJ/mol
Δ⁰Hcomb = 2219.70 kJ/mol
n= m /MW MW c₃H₈ = 44.1 g/mol
n= 12 g/44.1 g/mol = 0.27 mol
then for 12 g the heat released will be
0.27 mol x 2219.70 kJ/mol = 600 KJ
Answer:Tthe liquid in a graduated cylinder curves up at the edge where the liquid meets the wall of the cylinder. This curve in the liquid is called the meniscus and is used to determiine the volume of liquid in a graduated cylinder by observing the measurement tick closest to the bottom of the meniscus.
Explanation:
Hope it helps :D