Water is often referred as a <span>universal solvent </span>because it is capable dissolving much more solutes as compared to any other solvent. This is because, water is a high polar molecule. In water, H has partial positive charge while O has partial negative charge.
Due to this, water favors dissociation of molecules into positively and negatively charged ions. Positively charge ions gets attracted towards oxygen i.e. negatively charges, while negatively charged ions get attracted towards positive end of water molecule.
However, it is worth nothing that, despite water being referred as universal solvent, many compounds are insoluble or partially soluble in water. For instance, most of the hydroxide displays poor solubility in water.
Answer:
One triple bond and four non bonding electrons
Explanation:
In considering the lewis structure of carbon monoxide, we must remember that the molecule contains a total of ten valence electrons. Four are the valence electrons that are present on the valence shell of carbon while six are the valence electrons on oxygen. Some of these valence electrons participate in bonding in the CO molecule.
Out of the six valence electrons on oxygen, two valence electrons participate in bonding with carbon while the other four electrons remain localized on the oxygen atom as two lone pairs of electrons.
Hence there are four nonbonding electrons in the lewis structure of CO as well as one triple bond.
Answer:

Explanation:
Given that;
The energy gap between the valence band and the conduction band in the widely-used semiconductor gallium arsenide (GaAs) is Δ = 1.424 eV.
So; that implies that:

Suppose that we consider a small piece of GaAs with 1020 available electrons, -- This is taking about the numbers of electrons used which is :

Temperature is given as:

Number of electrons can be calculated by using the formula;



Answer:
1.5 moles
Explanation:
To find the number of moles of HCl in 500 mL of a 3 M solution of HCl, we consider moles in 1 liter/ 1000 mL.
3 moles HCl is contained in 1000 mL
x moles is HCl is contained in 500 mL

Hence the number of moles of HCl in 500 mL is 1.5 moles.
I Am Not Sure! Let Me Research More About It!