Using your periodic table if you look at it 3-11 are tansition metals so the horizontal Group Number will help if the group number has to digits just remove the one so if it were to be 13, the valence would be 3, if it were 14 the valence would be ,4 if it were 15, the valence would be 5, if it were 16 the valence would be 6, if it were 17 the valence would be 7 if it were group 18 the valence would be 8 so if anymore help needed to explain hit me up
Answer:
Hund's rule
Explanation:
Hund's rule is defined as the rule whose first rule in the chemistry says that, for a given electronic configuration, the term which posses lowest energy has maximum multiplicity. The multiplicity is defined as the tem 2S+1, where S is the total spin angular momentum.
Therefore, the term which has lowest energy that term posses maximum number of S.
Hund's rule of maximum multiplicity: Electron present in same energy orbitals firstly they completed half orbit than start pairing.
Therefore, the energy of lowest configuration for an atom is the one having the maximum number of unpaired electron which is allowed by the Pauli principle in a particular set of degenerate orbit is called Hund's rule.
Answer:A7.50kg object is hung from the bottom end of a vertical spring fastened to an overhead beam. The object is set into vertical oscillations having a period of2.30s. Find the force constant of the spring.
N/m
Explanation:
Let m₁ = 3.0 kg and v₁ = + 8 m/s (so right is positive), and m₂ = 1.0 kg and v₂ = 0. The total momentum of the two balls before and after collision is conserved, so
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
where v₁' = + 5 m/s and v₂' are the velocities of the two balls after colliding, so
(3.0 kg) (8 m/s) = (3.0 kg) (5 m/s) + (1.0 kg) v₂'
Solve for v₂' :
24 kg•m/s = 15 kg•m/s + (1.0 kg) v₂'
(1.0 kg) v₂' = 9 kg•m/s
v₂' = (9 kg•m/s) / (1.0 kg)
v₂' = + 9 m/s
which is to say, the second ball is given a speed of 9 m/s to the right after colliding with the first ball.
Pretty fast. Everything looks fast when running past a light pole