1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alla [95]
3 years ago
13

A 5.00-kg object is hung from the bottom end of a vertical spring fastened to an overhead beam. The object is set into vertical

oscillations having a period of 1.60 s. Find the force constant of the spring.
Physics
1 answer:
mezya [45]3 years ago
5 0

Answer:A7.50kg object is hung from the bottom end of a vertical spring fastened to an overhead beam. The object is set into vertical oscillations having a period of2.30s. Find the force constant of the spring.

N/m

Explanation:

You might be interested in
13 points and brainlyest if possible. Thanks.
nikdorinn [45]
Most likely it would be C not completely sure 
3 0
3 years ago
Read 2 more answers
How does light travel?
Ivenika [448]

Answer:

C

Explanation:

light can travel in a vacuum Anne the sped varies

7 0
3 years ago
Read 2 more answers
A student is wearing a pair of sunglasses designed to reduce the glare from reflected surfaces. When the student tilts her head
agasfer [191]
The answer is polarization. It is just like when you are on a boat and use polarized glasses so the water wont reflect into your eyes it also intensifies the color of the water so you can see better into the water.
example: you cant see any fish because glare from the sun, put on polarized glasses and now you can see fish up to 30 feet deep.
6 0
3 years ago
An infinite line of charge with linear density λ1 = 8.2 μC/m is positioned along the axis of a thick insulating shell of inner r
bixtya [17]

1) Linear charge density of the shell:  -2.6\mu C/m

2)  x-component of the electric field at r = 8.7 cm: 1.16\cdot 10^6 N/C outward

3)  y-component of the electric field at r =8.7 cm: 0

4)  x-component of the electric field at r = 1.15 cm: 1.28\cdot 10^7 N/C outward

5) y-component of the electric field at r = 1.15 cm: 0

Explanation:

1)

The linear charge density of the cylindrical insulating shell can be found  by using

\lambda_2 = \rho A

where

\rho = -567\mu C/m^3 is charge volumetric density

A is the area of the cylindrical shell, which can be written as

A=\pi(b^2-a^2)

where

b=4.7 cm=0.047 m is the outer radius

a=2.7 cm=0.027 m is the inner radius

Therefore, we have :

\lambda_2=\rho \pi (b^2-a^2)=(-567)\pi(0.047^2-0.027^2)=-2.6\mu C/m

 

2)

Here we want to find the x-component of the electric field at a point at a distance of 8.7 cm from the central axis.

The electric field outside the shell is the superposition of the fields produced by the line of charge and the field produced by the shell:

E=E_1+E_2

where:

E_1=\frac{\lambda_1}{2\pi r \epsilon_0}

where

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 8.7 cm = 0.087 m is the distance from the axis

And this field points radially outward, since the charge is positive .

And

E_2=\frac{\lambda_2}{2\pi r \epsilon_0}

where

\lambda_2=-2.6\mu C/m = -2.6\cdot 10^{-6} C/m

And this field points radially inward, because the charge is negative.

Therefore, the net field is

E=\frac{\lambda_1}{2\pi \epsilon_0 r}+\frac{\lambda_2}{2\pi \epsilon_0r}=\frac{1}{2\pi \epsilon_0 r}(\lambda_1 - \lambda_2)=\frac{1}{2\pi (8.85\cdot 10^{-12})(0.087)}(8.2\cdot 10^{-6}-2.6\cdot 10^{-6})=1.16\cdot 10^6 N/C

in the outward direction.

3)

To find the net electric field along the y-direction, we have to sum the y-component of the electric field of the wire and of the shell.

However, we notice that since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, this means that the net field produced by the wire along the y-direction is zero at any point.

We can apply the same argument to the cylindrical shell (which is also infinite), and therefore we find that also the field generated by the cylindrical shell has no component along the y-direction. Therefore,

E_y=0

4)

Here we want to find the x-component of the electric field at a point at

r = 1.15 cm

from the central axis.

We notice that in this case, the cylindrical shell does not contribute to the electric field at r = 1.15 cm, because the inner radius of the shell is at 2.7 cm from the axis.

Therefore, the electric field at r = 1.15 cm is only given by the electric field produced by the infinite wire:

E=\frac{\lambda_1}{2\pi \epsilon_0 r}

where:

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 1.15 cm = 0.0115 m is the distance from the axis

This field points radially outward, since the charge is positive . Therefore,

E=\frac{8.2\cdot 10^{-6}}{2\pi (8.85\cdot 10^{-12})(0.0115)}=1.28\cdot 10^7 N/C

5)

For this last part we can use the same argument used in part 4): since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, the y-component of the electric field is zero.

Learn more about electric field:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

4 0
3 years ago
HELP ANSWER QUESTION 1
arsen [322]
The width is 2.5 cm long and could not be the right answer
5 0
3 years ago
Other questions:
  • Why did the potassium permanganate crystals start to dissolve in water without being stirred or shaken
    6·2 answers
  • When astronauts travel to the moon, their bodies experience a lower gravitational pull than on Earth. Which type of pull are the
    5·2 answers
  • Which conversion is the function of a photovoltaic cell? A) sunlight to mechanical energy B) electricity to heat C) sunlight to
    7·1 answer
  • A current of 6.0 A runs through a circuit for 2.5 minutes.
    10·2 answers
  • An 80-kg skater is coasting at a velocity of 6 m/s. She sees a small child in her way and picks him up as she skates by. Her vel
    11·1 answer
  • YO YO I NEED HELP!!!
    7·1 answer
  • How much does a person weigh if it takes 700 kg*m/s to move them 10 m/s<br><br> NEED ASAP
    14·1 answer
  • Your best friend has very low energy levels and complains of not being able to sleep at night. Determine the BMI score that woul
    6·1 answer
  • As the wavelength of a wave increases on the electromagnetic spectrum,
    9·2 answers
  • Please answer these, I’m willing to give plenty of points.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!