To do that, you must pass electric current through a substance
that electrons have to spend energy to pass through.
The substance will be one that gets warm and dissipates heat
when electric current flows through it.
We'll say that the substance has "resistance", which we can measure.
The amount of heat that appears when current flows through it
will be (current²)·(resistance).
A few examples of things used for that purpose:
-- resistors
-- burners on electric stoves
-- coils of resistor-wire in a toaster
-- aquarium heater
-- electric clothes iron
-- electric coffee pot
-- blow-dryer
-- electric hair-curling iron
-- skinny tungsten wire in a light-bulb .
The answer for this question is D
the above three pictures may help you
go through the attachments
The magnitude of the force that the beam exerts on the hi.nge will be,261.12N.
To find the answer, we need to know about the tension.
<h3>How to find the magnitude of the force that the beam exerts on the hi.nge?</h3>
- Let's draw the free body diagram of the system using the given data.
- From the diagram, we have to find the magnitude of the force that the beam exerts on the hi.nge.
- For that, it is given that the horizontal component of force is equal to the 86.62N, which is same as that of the horizontal component of normal reaction that exerts by the beam on the hi.nge.

- We have to find the vertical component of normal reaction that exerts by the beam on the hi.nge. For this, we have to equate the total force in the vertical direction.

- To find Ny, we need to find the tension T.
- For this, we can equate the net horizontal force.

- Thus, the vertical component of normal reaction that exerts by the beam on the hi.nge become,

- Thus, the magnitude of the force that the beam exerts on the hi.nge will be,

Thus, we can conclude that, the magnitude of the force that the beam exerts on the hi.nge is 261.12N.
Learn more about the tension here:
brainly.com/question/28106871
#SPJ1