Answer:
Mars2 illuminated side of the planet is very heat, dark side very cool
Venus 2 a warm planet with a constant temperature across the entire surface
Explanation:
For this hypothetical case, when changing the planets they are changed with their current characteristics.
Case of Mars2
In this case, there is a planet with a very thin atmosphere, so the solar radiation reaches the ground without damping it, causing a lot of noise, so the illuminated side of the planet is very heat and when the dark side turns due to the little atmosphere it loses everything the heat for which it is very cold.
This thermal stress between the two sides of the planet continues constantly creating possible fruit trees in its rocky systems.
Case of Venus 2
The planet has a high atmospheric density, but it is very far from the sun, so the amount of radiation that arrives slightly warms the planet, but due to the thin atmosphere the losses for the dark period are very small, so the entire planet it is heated until it reaches an almost uniform temperature over its entire surface.
In this case we have a warm planet with a constant temperature across the entire surface, regardless of which side is lit.
Answer:
Weight of the object will be 98 N
Explanation:
We have given mass of the object m = 10 kg
Acceleration due to gravity 
We have to find the weight of the object
Weight of the object is dependent on mass and acceleration due to gravity, it is the product of mass and acceleration due to gravity
So weight of the object W = mass × acceleration due to gravity
So 
So weight of the object will be 98 N
You've failed because you failing becomes a statement rather than it becoming fact or what actually happened.
Answer:
Yes
Explanation: Electric and magnetic field are known to be inter-related, this implies that for any current carrying conductor there is a resulting magnetic field around the wire ( for example a current carrying conductor deflects a compass) and a magnetic field has been known to produce some amount current based on the<em> </em>principle of electromagnetic induction by Micheal Faraday.
The strength of magnetic field generated by a current carrying conductor is given by Bio-Savart law (purely mathematical) which is
B =
B= strength of magnetic field
I =current on conductor
r = distance on any point of the conductor relative to it center
If a current carrying could generate this magnitude of magnetic field, thus this magnetic field has the ability to interact (exert a force on any magnetic material) with any other magnetic material including a magnet.
Yes, a current carrying conductor can exert a force on a magnetic field