Answer:
- 0.25m/s²
Explanation:
Given parameters:
Initial velocity = 40m/s
Final velocity = 30m/s
Time taken = 40s
Unknown:
Acceleration of the car = ?
Solution:
Acceleration is the rate of change of velocity with time.
So;
Acceleration =
Acceleration =
= - 0.25m/s²
This implies that the car will decelerate at a rate of 0.25m/s²
Being made mostly of gas is NOT a
characteristic of an inner planet. The correct answer between all the choices
given is the last choice or letter D. I am hoping that this answer has
satisfied your query and it will be able to help you in your endeavor, and if
you would like, feel free to ask another question.
Formula for potential energy is V=mgh, where m is mass in KG, g is earth acceleration (10 m/s^2), and h its height in meters. We know mass, acceleration is constant and also known, we know height also. Lets substitute
V=75*10*300=225000[J]=225[kJ] - its the answer
Based on discoveries to date, the conclusion as “Planetary systems are common and planets similar in size to Earth are also common” is justified.
Answer: Option C
<u>Explanation:
</u>
Some studies show that on average, each star has at least single planet. This means that most stars, such as the Solar System, possess planets (otherwise exoplanets). It is known that small planets (more or less Earthly or slightly larger) are more common than giant planets. The mediocrity principles state that planet like Earth should be universal in the universe, while the rare earth hypothesis says they are extremely rare.
Size is often considered an important factor, because planets the size of the Earth are probably more terrestrial and can hold the earth's atmosphere. The planetary system is a series of gravitational celestial objects orbiting a star or galaxy. Generally, planetary systems describe systems with one or more planets, although such systems may also consist of bodies such as dwarf planets, asteroids and the like.
Answer:
The x component of the resultant force is -7.27N.
Explanation:
To obtain the x component of the resultant force, first we have to know the x components of the other forces. To do this, we just have to do some trigonometry:

Since both vectors are in the left side of the y-axis, they have a negative x component. So:

Finally, we sum both components to obtain the component of the resultant force:

In words, the x component of the resultant force is -7.27N.