hey you look nice (pic).
According to Newton’s first law, if no force is applied to a ball, it will continue moving at the same speed and direction as it did before. When we put the ball on the grass it stays in its place, namely it stays in zero motion since no force is applied to it. However, after we kick the ball, it will continue moving in the direction we kicked it. Its speed will drop gradually, due to friction (a force applied on the ball in the opposite direction to its motion), but the direction of its motion will remain the same.
According to Newton’s second law, a force applied to an object changes that object’s acceleration – namely, the rate at which the speed of the object changes. When we kick the ball, the force we apply to it causes it to accelerate from a speed of 0 to a speed of dozens of kilometers per hour. When the ball is released from the foot, it begins to decelerate (negative acceleration) due to the force of friction that is exerted upon it (as we observed in the previous example). If we were to kick a ball in outer space, where there is no friction, it would accelerate during the kick, and then continue moving at a constant speed in the direction that we kicked at, until it hits some other object or another force is applied to it.
Answer:

Explanation:
As per mechanical energy conservation we can say that here since friction is present in the barrel so we will have
Work done by friction force = Loss in mechanical energy
so we will have

here we know that



Initial compression in the spring is given as



now from above equation




Answer:
<em>D. refraction</em>
Explanation:
Refraction: Refraction is change in direction of light rays. Refraction occurs whenever light rays travels from a transparent medium to another transparent medium of different density. The abrupt change in direction at the surface of the surface of the two media is referred to as <em>refraction</em><em>.</em>
<em>Refraction occurs when light travels from air to glass or from air to liquid.</em>
<em>Laws Of Refraction:</em>
(i) The incident ray, the refracted ray and the normal, all at the point of incident lies in the same plane.
(ii) The ratio of the sine of the angle of incident to the sine of the angle of refraction is a constant for a given pair of media.
<em>Thus the right option is D. refraction</em>
You've got a 69.0-kg wooden crate on a wooden floor. The box can withstand a force of up to 338N in a horizontal direction without being moved. Following this, the wooden creates moving stats.
In order to calculate the friction coefficient, divide the force pushing two objects together by the force acting between them. friction coefficient might be 0 or one. They can be split into two categories: friction coefficient that is static. Kinetic friction coefficient (also known as sliding coefficient of friction).
the acceleration brought on by the gravitational pull of large masses generally, gravitational , often known as the acceleration brought on by the Earth's gravitational pull and centrifugal force,
F= friction coefficient *M*g
F= 0.5*69*9.8
F=338N
Learn more about gravitational here
brainly.com/question/3009841
#SPJ4
The energy of the wave will decrease.
The energy of a wave is given as
E = h f
where E = energy of waver
h = plank's constant
f = frequency of the wave.
From the formula , we see that the energy of the wave is directly proportional to the frequency of the wave. hence as the frequency of the wave decrease, the energy of the wave will decrease.