<span>So the question is how does heat prefer to remain and to unscramble the letters ONMFRIU. The unscrambled letters mean: UNIFORM. The heat likes to remain uniform because thermodynamic systems always tend to reach thermal equilybrium after some period of time that is specific for each system. </span>
Answer:
Conduction, Convection and Radiation
Explanation:
Hope this helps!
Answer:
Since the waves must carry a great deal of visual as well as audio information, each channel requires a larger range of frequencies than simple radio transmission. TV channels utilize frequencies in the range of 54 to 88 MHz and 174 to 222 MHz. (The entire FM radio band lies between channels 88 MHz and 174 MHz.)
Answer:
628.022466 N
8.61 m/s
Explanation:
m = Mass
= Coefficient of friction
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²

Magnitude of frictional force is 628.022466 N


Initial speed of the player is 8.61 m/s
Answer:
The correct answer is 
Explanation:
The formula for the electron drift speed is given as follows,

where n is the number of of electrons per unit m³, q is the charge on an electron and A is the cross-sectional area of the copper wire and I is the current. We see that we already have A , q and I. The only thing left to calculate is the electron density n that is the number of electrons per unit volume.
Using the information provided in the question we can see that the number of moles of copper atoms in a cm³ of volume of the conductor is
. Converting this number to m³ using very elementary unit conversion we get
. If we multiply this number by the Avagardo number which is the number of atoms per mol of any gas , we get the number of atoms per m³ which in this case is equal to the number of electron per m³ because one electron per atom of copper contribute to the current. So we get,

if we convert the area from mm³ to m³ we get
.So now that we have n, we plug in all the values of A ,I ,q and n into the main equation to obtain,

which is our final answer.