We have to find the resistance.
V = 12
A = 2
R = ?
And then we divide it to find r.
12/2 = 6 ohm's.
False,it could be false information like Wikipedia
Answer:
9.8m/s
Explanation:
Wherever you're on the earth's surface, gravitational force remains the same and it does not matter either its a rock that's being tossed or a sheet of paper, the acceleration remains 9.8m/s only. *Condition applied=air resistance neglected
Answer:
The frequency would double.
Explanation:
Given:
Speed of wave (v) = constant.
Frequency of wave initially (f₁) = 2 Hz
Initial wavelength of the wave (λ₁) = 1 m
Final wavelength of the wave (λ₂) = 0.5 m
Final frequency of the wave (f₂) = ?
We know that the product of wavelength and frequency of the wave is equal to the speed of the wave.
Therefore, framing in equation form, we have:
Wavelength × Frequency = Speed

It is given that speed of the wave remains the same. So, the product must always be a constant.
Therefore,

Now, plug in the given values and solve for 'f₂'. This gives,

Therefore, the final frequency is 4 Hz which is double of the initial frequency.
f₂ = 2f₁ = 2 × 2 = 4 Hz
So, the second option is correct.