Answer:

Explanation: Weight of space probes on earth is given by:
W= weight of the object( in N)
m= mass of the object (in kg)
g=acceleration due to gravity(9.81
)
Therefore,


Similarly,


Now, considering these two parts as uniform spherical objects
Also, according to Superposition principle, gravitational net force experienced by an object is sum of all individual forces on the object.
Force between these two objects is given by:

G= gravitational constant (
)
= masses of the object
R= distance between their centres (in m)(18 m)
Substituiting all these values into the above formula

This is the magnitude of force experienced by each part in the direction towards the other part, i.e the gravitational force is attractive in nature.
Ok so it usually includes the evaluation of symptom and disorder severity, patterns of symptoms over time number, frequency, and duration of episodes, and the patient's strengths and weaknesses.
Answer:
a) 70 N, b) b. Each initially applied a force bigger than static friction to get the box moving and accelerating, then when the desired final speed was achieved they reduced the force to make the net force zero.
Explanation:
a) A constant speed means that magnitude of friction force is equal to the magnitude of the external force. The friction force is directly proportional to the normal force, which is equal to the weight of the box. Therefore, the magnitude of the force is 70 N.
b) Alice used initially a greater force to accelerate the box up to needed speed and later reduced the external force to keep speed constant. The right choice is option b.
Complete question:
A small 175-g ball on the end of a light string is revolving uniformly on a frictionless surface in a horizontal circle of diameter 1.0 m. The ball makes 2.0 revolutions every 1.0 s. What are the magnitude and direction of the acceleration of the ball?
Answer:
The acceleration of the ball is 78.98 m/s², directed inwards
Explanation:
Given;
mass of the ball, m = 175 g
radius of the circle, r = 0.5 m
angular speed of the ball, ω = 2 rev/s
The magnitude of the centripetal acceleration of the ball is calculated as follows;

The centripetal acceleration is directed inwards.
Answer: What is the acceleration of an object that moves at constant velocity? Acceleration is Zero
What is the net force on the object in this case? The ner force is also Zero
Explanation: If the velocity is constant means that the acceleration is zero, from Newton second law is clear that net force is also zero
Fnet= m* a as v is constant a=0 this Fnet is zero.