Answer:
Density depends on the amount of the substance you have, as the mass will increase, but also what the volume is because if you have a high mass object with an extremely high volume, it won't be very dense. But if you have a high mass object with a low volume, it will be very dense.
Answer:
John is buying shirts for his softball team. He will pay a one-time processing fee of $27.50 and $12.75 per each shirt ordered. Which equation can be used to find y, the total cost to buy xshirts? John is buying shirts for his softball team. He will pay a one-time processing fee of $27.50 and $12John is buying shirts for his softball team. He will pay a one-time processing fee of $27.50 and $12.75 per each shirt ordered. Which equation can be used to find y, the total cost to buy xshirts? xdsz.75 per each shirt ordered. Which equation can be used to find y, the total cost to buy xshirts? John is buying shirts for his softball team. He will pay a one-time processing fee of $27.50 and $12.75 per each shirt ordered. Which equation can be used to find y, the total cost to buy xshirts? John is buying shirts for his softball team. He will pay a one-time processing fee of $27.50 and $12.75 per each shirt ordered. Which equation can be used to find y, the total cost to buy xshirts?
Explanation:
Answer:
atomic number
Explanation:
atomic number is the number of protons
Answer: fourth option, 10.8 kJ
Explanation:
The <em>heat of fusion</em>, also named latent heat of fusion, is the amount of heat energy required to change the state of a substance from solid to liquid (at constant pressure).
The data of the <em>heat of fusions</em> of the substances are reported in tables and they can be shown either per mole or per gram of substance.
In this case we have that the<em> heat of fusion for water </em>is reported per mole: <em>6.02 kJ/mole</em>.
The formula to calculate <em>how many kJ of heat (total heat) are needed to completely melt 32.3 g of water, given that the water is at its melting point</em> is:
- Heat = number of moles × heat of fusion
The calculations are:
- number of moles = mass / molar mass
number of moles = 32.3 g / 18.015 g/mol = 1.79 mol
- Heat = 1.79 mol × 6.02 kJ / mol = 10.8 kJ ← answer