Answer:

Explanation:
From the question we are told that
Temp of first bolts
Temp of 2nd bolt 
Generally the equation showing the relationship between heat & temperature is given by

Generally heat released by the iron bolt = heat gained by the iron bolt
Generally solving mathematically





Therefore
is the final temperature inside the container
Answer:
In the air
Explanation:
There are three states of matter:
- Solids: in solids, the particles are tightly bond together by strong intermolecular forces, so they cannot move freely - they can only vibrate around their fixed position
- Liquids: in liquids, particles are more free to move, however there are still some intermolecular forces keeping them close to each other
- Gases: in gases, particles are completely free to move, as the intermolecular forces between them are negligible
For this reason, it is generally easier to compress/expand the volume of a gas with respect to the volume of a liquid.
In this problem, we are comparing water (which is a liquid) with air (which is a gas). From what we said above, this means that the change in volume is larger in the air rather than in the water.
Answer:
- Direct current is a current in which electrons flow in one direction only
- Alternating current is a current in which the direction of the electron flow reverses periodically - so, half a cycle forward, half a cycle backward
There are several advantages of using alternating currents for the transmission of electricity across a country, over large distances. The main advantages are:
- The voltage of alternating currents can be easily increased/decreased by using transformers. For instance, a transformer is used at the beginning of the transmission line to increase the voltage (electricity is transmitted at high voltage in order to reduce dissipated power), and then another transformer is used before the electricity enters the houses, in order to decrease the voltage. Transformers only work with alternating currents.
- It is easy to interrupt the flow of an alternating current, because its value naturally becomes zero every half a cycle, so this is useful in case the current must be interrupted.
Answer:
Yes, the rocks are made of matter
Explanation:
Let's remember the definition of matter.
Matter is all that has mass and occupies a place in space. Therefore, if we measure the mass of each rock we will know its mass, the other fact is that rocks like any particular body are occupying a place in an empty space.
The opposite of this is antimatter and can its extent be given by the quantum mechanics.