1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slava [35]
3 years ago
7

6. A proton is released from rest 1.0 cm off a center of a uniformly charged disk of a 2.0 m radius carrying a +180 nC charge. W

hat is the speed of the proton when it is 5 cm from the disk?
Physics
1 answer:
wel3 years ago
8 0

Answer:

the speed of the proton  is  v = 78.1 km/s

Explanation:

Generally Electric potential energy resulting from a proton can be mathematically represented as

               V(z) = \frac{Q(\sqrt{R^2 + z^2} - z )}{2 \pi \epsilon_o R^2}

Where

        R is the radius of the disc which is given as R = 2m

        q is the charge on the proton with  a value of  q = 1.602 *10^{-19}C

        the mass of this proton has a value of  m=1.673*10^{-27}kg

        z is the distance of the center of the disk from the question

       z_1 =1.0cm = \frac{1}{100} = 0.01m

      z_2 = 5cm = \frac{5}{100} = 0.05m

      \epsilon_0 = 8.85*10^{-12}F/m

According the law of conservation of energy

  The change in kinetic energy of the proton + change in electrostatic   = 0            

                                                                              potential energy  

The change in kinetic energy is \Delta KE = \frac{1}{2} m (v^2 - u^2)

Since u = 0 the equation becomes

                \Delta KE = \frac{1}{2} m (v^2)

change in electrostatic potential energy is = q (V(z_1) - V(z_2))

                                                                       

Substituting this into the equation we have

       \frac{1}{2} mv^2 +q(V(z_1)- V(z_2)) = 0

       \frac{1}{2} mv^2 = -q(V(z_1)- V(z_2))

Recalling that   V(z) = \frac{Q(\sqrt{R^2 + z^2} - z )}{2 \pi \epsilon_o R^2} we have

                 \frac{1}{2} mv^2  = -q(\frac{Q(\sqrt{R^2 +z_2^2}-z_2 )}{2 \pi \epsilon_0 R^2} - \frac{Q(\sqrt{R^2 +z_1^2}-z_1 )}{2 \pi \epsilon_0 R^2} )    

                 \frac{1}{2} mv^2  = q(\frac{Q(\sqrt{R^2 +z_1^2}-z_1 )}{2 \pi \epsilon_0 R^2} - \frac{Q(\sqrt{R^2 +z_2^2}-z_2 )}{2 \pi \epsilon_0 R^2} )    

         Substituting values         \frac{1}{2} mv^2  = 1.602*10^{-19}(\frac{180*10^{-9}(\sqrt{2^2 +0.01^2}-0.011 )}{2 \pi 8.85*10^{-12}* 2^2} - \frac{180*10^{-9}(\sqrt{2^2 +0.05^2}-0.05 )}{2 \pi *8.85*10^{-12} *2^2} )

Making v the subject

           v=\sqrt{\frac{1.602*10^{-19}(\frac{180*10^{-9}(\sqrt{2^2 +0.01^2}-0.011 )}{2 \pi 8.85*10^{-12}* 2^2} - \frac{180*10^{-9}(\sqrt{2^2 +0.05^2}-0.05 )}{2 \pi *8.85*10^{-12} *2^2} )}{0.5 *1.673*10^{-27}}}

             v = 78.1 km/s

     

               

                   

               

                                                                                 

You might be interested in
На рычаге размещены два противовеса таким образом, что рычаг находится в состоянии равновесия. Вес расположенного слева противов
prisoha [69]

Answer:

Вес противовеса, или сила нагрузки, составляет затем 100 000 фунтов-футов, разделенных на 20 футов, или 5000 фунтов.

Explanation:

8 0
3 years ago
PLZ HELP!! WILL MARK BRAINLIEST!!
natali 33 [55]
As waves get closer to the beach they increase in energy
8 0
3 years ago
A roundabout in a fairground requires an input power of 2.5 kW when operating at a constant angular velocity of 0.47 rad s–1 . (
natita [175]

Answer:

Explanation:

Since the roundabout is rotating with uniform velocity ,

input power = frictional power

frictional power = 2.5 kW

frictional torque x angular velocity = 2.5 kW

frictional torque x .47 = 2.5 kW

frictional torque = 2.5 / .47 kN .m

= 5.32 kN . m

= 5 kN.m

b )

When power is switched off , it will decelerate because of frictional torque .

5 0
3 years ago
Over a period of operation, the useful work output of the fluorescent bulb was
Nadya [2.5K]

Answer:

199.0521 Will be the answer

5 0
3 years ago
The nose of an ultralight plane is pointed south, and its airspeed indicator shows 28 m/s . the plane is in a 18 m/s wind blowin
leva [86]
<span>Here I think you have to find the velocity in x and y components where x is east and y is north
 So as air speed indicator shows the negative speed in y component and adding it in
  air speed while multiplying with the direction component we will get the velocity as velocity is a vector quantity so direction is also required
 v=-28 m/s y + 18 m/s (- x/sqrt(2) - y/sqrt(2))
 solving
  v= -12.7 m/s x-40.7 m/s y
 if magnitude of velocity or speed is required then
  speed= sqrt(12.7^2 + 40.7^2)
 speed= 42.63 m/s
 if angle is asked
  angle = arctan (40.7/12.7)
 angle = 72.67 degrees south of west</span>
6 0
3 years ago
Other questions:
  • What do you think the value will be for the car's distance
    8·1 answer
  • What is shown in the diagram
    15·2 answers
  • Newton’s first law of motion applies to what?
    8·1 answer
  • Four of your friends are in new relationships, but only two of these relationships are healthy. Which of your friends are in unh
    9·2 answers
  • A brick is released with no initial speed from the roof of a building and strikes the ground in 1.80 s , encountering no appreci
    10·1 answer
  • Photosynthesis is an endothermic chemical reaction that forms sugars from carbon dioxide, water, and the sun's energy. Which of
    13·2 answers
  • _______ force is the force that keeps an object moving on a curved path that is directed inward towards the center of a rotation
    12·1 answer
  • Write down the conservation of momentum?​
    12·1 answer
  • I need help with these questions please help <br><br><br> 25 points
    5·1 answer
  • The two basic units of weight in the metric system is the___?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!