Because of the skin depth effect, the current at high frequency tends to flow at very low depth from radius. Then at high frequency the effective cross section of the wire is narrower than at DC.
Fro example skin depth at 100 kHz is 0.206 mm (0.008”), a wire more thicker than AWG26 could be a waste of copper, better use a bunch of thin wire (Litz wire) to rise the Q factor.
Answer:
Qx = 9.10
m³/s
Explanation:
given data
diameter = 85 mm
length = 2 m
depth = 9mm
N = 60 rev/min
pressure p = 11 ×
Pa
viscosity n = 100 Pas
angle = 18°
so Qd will be
Qd = 0.5 × π² ×D²×dc × sinA × cosA ..............1
put here value and we get
Qd = 0.5 × π² × ( 85
)²× 9
× sin18 × cos18
Qd = 94.305 ×
m³/s
and
Qb = p × π × D × dc³ × sin²A ÷ 12 × n × L ............2
Qb = 11 ×
× π × 85
× ( 9
)³ × sin²18 ÷ 12 × 100 × 2
Qb = 85.2 ×
m³/s
so here
volume flow rate Qx = Qd - Qb ..............3
Qx = 94.305 ×
- 85.2 ×
Qx = 9.10
m³/s
Examples of quality assurance activities include process checklists, process standards, process documentation and project audit. Examples of quality control activities include inspection, deliverable peer reviews and the software testing process. You may like to read more about the quality assurance vs quality control.
Answer:
The time required is 10.078 hours or 605 min
Explanation:
The formula to apply here is ;
K=(d²-d²₀ )/t
where t is time in hours
d is grain diameter to be achieved after heating in mm
d₀ is the grain diameter before heating in mm
Given
d=5.5 × 10^-2 mm
d₀=2.4 × 10^-2 mm
t₁= 500 min = 500/60 =25/3 hrs
t₂=?
n=2.2
First find K
K=(d²-d²₀ )/t₁
K={ (5.1 × 10^-2 mm)²-(2.4 × 10−2 mm)² }/ 25/3
K=(0.051²-0.024²) ÷25/2
K=0.000243 mm²/h
Re-arrange equation for K ,to get the equation for d as;
d=√(d₀²+ Kt) where now t=t₂

Explanation:!!
I hope you Feel better :)