1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lynna [10]
3 years ago
6

Air at 300 K and 100 kPa steadily flows into a hair dryer having electrical work input of 1500 W. Because of the size of the air

intake, the inlet velocity of the air is negligible. The air temperature and velocity at the hair dryer exit are 80°C and 21 m/s, respectively. The flow process is both constant pressure and adiabatic. Assume air has constant specific heats evaluated at 300 K. Determine the air mass flow rate into the hair dryer, in kg/s.
Engineering
2 answers:
dezoksy [38]3 years ago
8 0

Answer:

0.0280Kg/s

Explanation:

Given:

W = 1500

V2 = 300

V1 = 0

Q = 0 ( adiabatic)

T1 = 300

T2 = 20 m/s = converting to degrees we have 353°c

Let's use the energy equation

Q - W = m_• *( Cp(dT) + 0.5*(V2^2 - V1^2) Q = 0

[/tex] m_• = W / (Cp(dT) + 0.5*V2^2) [/tex]

= 1500 / (1005(353 - 300) + 0.5*21^2)

= 1500 W / 53485.5 =0.0280 kg/s

maks197457 [2]3 years ago
8 0

Answer:

The rate of air mass flow is given as \dot{m}=0.02804 kg/s^2

Explanation:

The steady state energy equation is given as

\dot{Q}-\dot{W}=\dot{m}\left[(h_2-h_1)+\left(\dfrac{V_1^2-V_2^2}{2}\right)+g(z_1-z_2)\right]

Here,

Q' is heat interaction per unit time with the hair dryer

W' is work interaction per unit time with the system

m' is mass flow rate into the hair dryer

Since the process is adiabatic so the value of Q' is 0 .

The elevations at inlet and outlet are same(z_1=z_2) so z_1-z_2=0

So the equation becomes

0-\dot{W}=\dot{m}\left[(h_1-h_2)+\left(\dfrac{V_1^2-V_2^2}{2}\right)+g(0)\right]\\\dot{W}=-\dot{m}\left[(h_1-h_2)+\left(\dfrac{V_1^2-V_2^2}{2}\right)\right]\\\dot{W}=\dot{m}\left[(h_2-h_1)+\left(\dfrac{V_2^2-V_1^2}{2}\right)\right]\\\dot{W}=\dot{m}\left[C_p(T_2-T_1)+\left(\dfrac{V_2^2-V_1^2}{2}\right)\right]

Now the value of power is given as 1500 W so the value of W' is 1500 W

m' is to be calculated

T_2 is the temperature at the exit given as 80 C or 80+273=363K

T_1 is given as 300 K

V_1 is given as negligible so it is 0

V_2 is given as 21 m/s

C_p is given as 1.005 kJ/kgK

So the equation becomes

\dot{W}=\dot{m}\left[C_p(T_2-T_1)+\left(\dfrac{V_2^2-V_1^2}{2}\right)\right]\\1.5 kW=\dot{m}\left[1.005 kJ/kgK(363-300 )K+\left(\dfrac{21^2-0^2}{2}*(1/1000)\right)\right]\\1.5=\dot{m}(53.48)\\\dot{m}=\dfrac{1.5}{53.48}\\\dot{m}=0.02804 kg/s^2

So the rate of air mass flow is given as \dot{m}=0.02804 kg/s^2

You might be interested in
According to the amortization table, Demarco and Tanya will pay a total of in interest over the life of their loan.
Ymorist [56]

Answer:

(Interest rate/number of payments)*$170000= interest for the first month.

Interest amounts for all the months of repayment plus $170000=Total loan cost

Explanation:

Interest is the amount you pay for taking a loan from a bank on top of the original amount borrowed.

Factors affecting how much interest is paid are; the principal amount, the loan terms, repayment schedule, the repayment amount and the rate of interest.

The interest paid=(rate of interest/number of payments to make)*principal amount borrowed.

You divide the interest with number of payments done in a year where monthly are divided by 12.Multiplying it by loan balance in the first month which is your principal amount gives the interest rate to pay for that month.

You new loan balance will be= Principal -(repayment-interest)

Do this for the period the loan should take.

Add all the interest amount to original borrowed amount to get total cost of the loan after the period of time.

8 0
3 years ago
Read 2 more answers
What effect does air have on the acceleration of aircraft during flight?
scoundrel [369]
The effect would be the altitude of the air, the higher you go up the closer you are to space we’re there’s no oxygen and everything moves slow so when your trying to fly across the world it could feel like your moving slower
5 0
3 years ago
The inlet and exhaust flow processes are not included in the analysis of the Otto cycle. How do these processes affect the Otto
lara31 [8.8K]

Answer:

Suction and exhaust processes do not affect the performance of Otto cycle.

Explanation:

Step1

Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.

Step2

Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.

Step3

The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:

Process 0-1 is suction process and process 1-0 is exhaust process.

7 0
3 years ago
The size of Carvins Cove water reservoir is 3.2 billion gallons. Approximately, 11 cfs of water is continuous withdrawn from thi
Zolol [24]

Answer:

471 days

Explanation:

Capacity of Carvins Cove water reservoir = 3.2 billion gallons i.e. 3.2 x 10˄9 gallons

As,  

1 gallon = 0.133 cubic feet (cf)

Therefore,  

Capacity of Carvins Cove water reservoir in cf  = 3.2 x 10˄9 x 0.133

                                                                         = 4.28 x 10˄8

 

Applying Mass balance i.e

Accumulation = Mass In - Mass out   (Eq. 01)

Here  

Mass In = 0.5 cfs

Mass out = 11 cfs

Putting values in (Eq. 01)

Accumulation  = 0.5 - 11

                         = - 10.5 cfs

 

Negative accumulation shows that reservoir is depleting i.e. at a rate of 10.5 cubic feet per second.

Converting depletion of reservoir in cubic feet per hour = 10.5 x 3600

                                                                                       = 37,800

 

Converting depletion of reservoir in cubic feet per day = 37, 800 x 24

                                                                                         = 907,200  

 

i.e. 907,200 cubic feet volume is being depleted in days = 1 day

1 cubic feet volume is being depleted in days = 1/907,200 day

4.28 x 10˄8 cubic feet volume will deplete in days  = (4.28 x 10˄8) x                    1/907,200

                                                                                 = 471 Days.

 

Hence in case of continuous drought reservoir will last for 471 days before dry-up.

8 0
3 years ago
Why will screws never replace nails​
cupoosta [38]

Answer:

because people have different opinions on nails and screws

Explanation:

3 0
3 years ago
Other questions:
  • Technician A says that you don’t need to use an exhaust extraction system when working on vehicles equipped with a catalytic con
    9·1 answer
  • What are 3 reasons why small businesses are an important part of the American economy?
    9·2 answers
  • Flow and Pressure Drop of Gases in Packed Bed. Air at 394.3 K flows through a packed bed of cylinders having a diameter of 0.012
    8·1 answer
  • Often an attacker crafts e-mail attacks containing malware designed to take advantage of the curiosity or even greed of the reci
    14·1 answer
  • The value read at an analog input pin using analogRead() is returned as a binary number between 0 and the maximum value that can
    14·1 answer
  • This just a question that I keep forgetting, are lightskin people black.??
    6·2 answers
  • Find the general solution of the equation<br>a) Tan A = 1/√3​
    11·1 answer
  • Practice finding the volume of a sphere.
    10·2 answers
  • For binary flash distillation, we discussed in class that there are 8 variables (F, ZA, V, ya, L, XA, P and T) and 4 equations d
    10·1 answer
  • To measure the greening of the U.S. economy, you need only to look at the growing number of green jobs and occupations.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!