Answer: first option, the work output of the hairdryer will be less than the work input.
Explanation:
1) The work output measured in watts is the power of hair dryer measured in joules per second.
2) The hair dryer converts electrical energy from the wall outlet to mechanical and thermal energy: hot wind.
3) Nevertheless, you can never expect a 100% efficiency of the machines: due to friction, some energy is converted into useless energy.
So, efiiviency = power output / power input< 1 ⇒
power output = work output / time
input power = work input / time
⇒ work output / work input < 1
⇒ work output < work input.
Which is the first option: the work output of the hairdryer will be less than the work input
Answer:
The answer to your question is d. 0.5 M
Explanation:
Data
[A] = 1M
K = 0.5
Concentration of B and C at equilibrium = x
Concentration of A at equilibrium = 1 - x
Equation of equilibrium
k = ![\frac{[B][C]}{A}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BB%5D%5BC%5D%7D%7BA%7D)
Substitution
![0.5 = \frac{[x][x]}{1 - x}](https://tex.z-dn.net/?f=0.5%20%3D%20%5Cfrac%7B%5Bx%5D%5Bx%5D%7D%7B1%20-%20x%7D)
Simplification
0.5 = 
Solve for x
0.5(1 - x) = x²
0.5 - 0.5x = x²
x² + 0.5x - 0.5 = 0
Find the roots x₁ = 0.5 x₂ = -1
There are no negative concentrations so the concentration of A at equilibrium is
[A] = 1 - 0.5
= 0.5 M
Compounds that has two elements on the formula can be bonded by ionic or covalent bond. If the compound is a metal and a non-metal then it will be ionic bonding. However, when it involves two non-metals, then it will have covalent bonding.
The question is incomplete, the complete question is;
A molecule that contains three identical polar bonds to the central atom will be ________.
nonpolar if the geometry is planar triangular
polar in all cases
nonpolar in all cases
impossible to tell the polarity
either polar or nonpolar depending on the identity of the atoms bonded to the central atom
Answer:
Nonpolar if the geometry is planar triangular
Explanation:
The polarity of molecules depends both on the polarity of individual bonds in the molecule as well as the overall dipole moment of the molecule. We must remember that dipole moment is a vector quantity hence direction of the resultant vector is very important.
Now, if i have a molecule that contains three identical polar bonds, a planar triangular geometry means that the molecule is symmetrical and will have an overall dipole moment of zero. Hence the molecule is nonpolar.