Time taken by the bowling ball to reach its highest point= 0.214 s
initial velocity= Vi=2.1 m/s
Final velocity= Vf=0 as the velocity at the highest point is zero.
acceleration= g= -9.8 m/s²
using the kinematic equation Vf= Vi + at
0= 2.1 + (-9.8)t
t= -2.1/-9.8
t=0.214 s
Thus the time taken by the bowling ball to reach its highest point is 0.214 s
The tension in the rope B is determined as 10.9 N.
<h3>Vertical angle of cable B</h3>
tanθ = (6 - 4)/(5 - 0)
tan θ = (2)/(5)
tan θ = 0.4
θ = arc tan(0.4) = 21.8 ⁰
<h3>Angle between B and C</h3>
θ = 21.8 ⁰ + 21.8 ⁰ = 43.6⁰
Apply cosine rule to determine the tension in rope B;
A² = B² + C² - 2BC(cos A)
B = C
A² = B² + B² - (2B²)(cos A)
A² = 2B² - 2B²(cos 43.6)
A² = 0.55B²
B² = A²/0.55
B² = 65.3/0.55
B² = 118.73
B = √(118.73)
B = 10.9 N
Thus, the tension in the rope B is determined as 10.9 N.
Learn more about tension here: brainly.com/question/24994188
#SPJ1
The behavior of an ideal gas at constant temperature obeys Boyle's Law of
p*V = constant
where
p = pressure
V = volume.
Given:
State 1:
p₁ = 10⁵ N/m² (Pa)
V₁ = 2 m³
State 2:
V₂ = 1 m³
Therefore the pressure at state 2 is given by
p₂V₂ = p₁V₁
or
p₂ = (V₁/V₂) p₁
= 2 x 10⁵ Pa
Answer: 2 x 10⁵ N/m² or 2 atm.