Answer:
option (D) is correct.
Explanation:
According to the work energy theorem, the work done by all forces is equal to the change in kinetic energy of the body.
the kinetic energy of a body is directly proportional to the square of the speed of the body.
As the kinetic energy change, the speed of the body also change.
Option (D) is correct.
a = ( v(2) - v(1) ) ÷ ( t(2) - t(1) )
2 = ( v(2) - 10 ) ÷ ( 6 - 0 )
2 × 6 = v(2) - 10
v(2) = 12 + 10
v(2) = 22 m/s
Answer:
<h2>C. <u>
0.55 m/s towards the right</u></h2>
Explanation:
Using the conservation of law of momentum which states that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision.
Momentum = Mass (M) * Velocity(V)
BEFORE COLLISION
Momentum of 0.25kg body moving at 1.0m/s = 0.25*1 = 0.25kgm/s
Momentum of 0.15kg body moving at 0.0m/s(body at rest) = 0kgm/s
AFTER COLLISION
Momentum of 0.25kg body moving at x m/s = 0.25* x= 0.25x kgm/s
<u>x is the final velocity of the 0.25kg ball</u>
Momentum of 0.15kg body moving at 0.75m/s(body at rest) =
0.15 * 0.75kgm/s = 0.1125 kgm/s
Using the law of conservation of momentum;
0.25+0 = 0.25x + 0.1125
0.25x = 0.25-0.1125
0.25x = 0.1375
x = 0.1375/0.25
x = 0.55m/s
Since the 0.15 kg ball moves off to the right after collision, the 0.25 kg ball will move at <u>0.55 m/s towards the right</u>
<u></u>
Speed = (distance traveled) / (time to travel the distance).
Strange as it may seem, 'velocity' is completely different.
Velocity doesn't involve the total distance traveled at all.
Instead, 'velocity' is based on 'displacement' ... the distance
between the start-point and end-point, regardless of the route
taken to get there. So the displacement in driving once around
any closed path is zero, because you end up where you started.
Velocity =
(displacement during some time)
divided by
(time for the displacement)
AND the direction from the start-point to the end-point.
For the guy who drove 15 km to his destination in 10 min, and then
back to his starting point in 5 min, (assuming he returned by way of
the same 15-km route):
Speed = (15km + 15km) / (10min + 5min) = (30/15) (km/min)
= 2 km/min.
Velocity = (end location - start position) / (15 min) = Zero .