Explanation:
It is given that,
Velocity of the electron, 
Magnetic field, 
Charge of electron, 
(a) Let
is the force on the electron due to the magnetic field. The magnetic force acting on it is given by :

![F_e=1.6\times 10^{-19}\times [(2\times 10^6i+3\times 10^6j)\times (0.030i-0.15j)]](https://tex.z-dn.net/?f=F_e%3D1.6%5Ctimes%2010%5E%7B-19%7D%5Ctimes%20%5B%282%5Ctimes%2010%5E6i%2B3%5Ctimes%2010%5E6j%29%5Ctimes%20%280.030i-0.15j%29%5D)


(b) The charge of electron, 
The force acting on the proton is same as force on electron but in opposite direction i.e (-k). Hence, this is the required solution.
Answer:
Particles in a water wave exchange kinetic energy for potential energy. When particles in water become part of a wave, they start to move up or down. This means that kinetic energy (energy of movement) has been transferred to them
Explanation:
hope this helps u ....
<em>pls mark this as the brainliest...</em>
Answer:
However, the disadvantages are:
1. Many atimes for some motion prolems, free-body diagrams has to be drawn many times so to have enough equations to solve for the unknowns. This is not the same with energy conservation principles.
2. In situations where we need to find the internal forces acting on an object, we can't truly solve such problems using free-body diagram as it captures external forces. This is not the same with energy conservation principles.
Explanation:
Often times the ideal method to use in solving motion problem related questions are mostly debated.
Energy conservation principles applies to isolated systems are useful when object changes their positions in moving upward or downward converts its potential energy due to gravity for kinetic energy, or the other way round. When energy in a system or motion remains constant that is energy is neither created nor destroyed, it can therefore be easier to calculate other unknown paramters like in the motion problem velocity, distance bearing it in mind that energy can only change from one type to another.
On the other hand, free body diagram which is a visual representation of all the forces acting on an object including their directions has so many advantages in solving motion related problems which include finding relationship between force and motion in identifying the force acting on a body.
Answer:
Sorry for waisting ur time just tryna get points :)
Explanation:
Assuming is a closed circuit when the switch is closed, it would be the strength of the battery in the circuit, assuming a and b were points at each end of the circuit. Depending on the specifics of the circuit, this could change, you could add more batteries together or it could reduce based on resistance if there's a viable current path still open while the switch is open. You may have missed attaching a picture or link.