3I₂ + 2Al → 2AlI₃
m(I₂)=3M(I₂)m(Al)/{2M(Al)}
m(I₂)=3*253.8*20.4/{2*27.0}=287.64 g
The thermal energy needed to completely melt 9.60 mole of ice at 0.0 C is 57.8 Kj
Explanation
ice melt to form water
The molar heat of fusion for water is 6.02 Kj/mol
Thermal energy = moles x molar heat of fussion for water
=9.6 mol x6.02 kj/mol =57.8 Kj
Explanation:
The three sub atomic particles are;
Neutrons, Electrons and Protons
Hydrogen - H
Neutrons: 0
Electrons: 1
Protons: 1
Deuterium - D
Neutrons: 1
Electrons: 1
Protons: 1
Tritium - T
Neutrons: 2
Electrons: 1
Protons: 1
Hi, here is a basic summary of what we did in a lab; there were 3 reactions: The procedure: Reaction 1: Solid sodium hydroxide dissolves in water to form an aqueous solution of ions. NaOH(s)-> Na+(aq) + OH-(aq) ΔH1=-34.121kJ Reaction 2: Solid sodium hydroxide reacts with an aqueous solution of HCl to form water and an aqueous solution of sodium chloride. NaOH(s) + H+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH2=-83.602kJ Reaction 3: An aqueous solution of sodium hydroxide reacts with an aqueous solution of HCl to form water an an aqueous solution of sodium chloride. H+(aq) + OH-(aq) + Na+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH3= -50.2kJ The ΔH values were calculated by dividing the heat gained by the number of moles (each reaction had 0.05moles of NaOH) The problem: Net ionic equations for reaction 2 & 3: 2: NaOH(s) + H+(aq) -> H2O + Na+(aq) 3: H+(aq) + OH-(aq) -> H2O i) In reaction 1, ΔH1 represents the heat evolved as solid NaOH dissolves. Look at the net ionic equations for reactions 2 and 3 and make similar statements as to what ΔH2 and ΔH3 represent. ii) Compare ΔH2 with (ΔH1 + ΔH3). Explain in sentences the similarity between these two values by using your answer to #5 above. Attempt at answering: i) Firstly, ΔH2 represents the heat evolved as the hydrogen ion displaces the sodium ion, creating a single displacement reaction. ΔH3 represents the heat evolved as the hydrogen and hydroxide ion form water via a neutralization reaction. ii) ΔH2 is equal to (or supposed to be, this is a source of error while calculating) (ΔH1 + ΔH3). The similarity between these two values is that .. (this is where I get confused!)
Source https://www.physicsforums.com/threads/calorimetry-help-chemistry.399653/
Selfmade.ivyy hope this help