Answer:
ANSWER BELOW I
I
V
Remember that w=mg where w is weight in Newtons, m is mass in kilograms, and g is gravity in
m/s2
. For example, for Earth, 445 N = 45.4 × 9.8
m/s2
:Notice that the x-axis values will be gravity in
m/s2
, which is already given in the table, and the y-axis values will be the weight in Newtons. Remember to round your weights to a whole number, and to enter the points starting with the lowest gravity (moon, then Mars, then Venus, then Earth).
Electron configurations:
Ge: [Ar] 3d10 4s2 4p2 => 6 electrons in the outer shell
Br: [Ar] 3d10 4s2 4p5 => 7 electrons in the outer shell
Kr: [Ar] 3d10 4s2 4p6 => 8 electrons in the outer shell
The electron affinity or propension to attract electrons is given by the electronic configuration. Remember that the most stable configuration is that were the last shell is full, i.e. it has 8 electrons.
The closer an atom is to reach the 8 electrons in the outer shell the bigger the electron affinity.
Of the three elements, Br needs only 1 electron to have 8 electrons in the outer shell, so it has the biggest electron affinity (the least negative).
Ge: needs 2 electrons to have 8 electrons in the outer shell, so it has a smaller (more negative) electron affinity than Br.
Kr, which is a noble gas, has 8 electrons and is not willing to attract more electrons at all, the it has the lowest (more negative) electron affinity of all three to the extension that really the ion is so unstable that it does not make sense to talk about a number for the electron affinity of this atom.
Answer:
In a collision, the velocity change is always computed by subtracting the initial velocity value from the final velocity value. If an object is moving in one direction before a collision and rebounds or somehow changes direction, then its velocity after the collision has the opposite direction as before.
Explanation:
option B open system
because in open system energy and mass can escape from the system or can be added to it.