Out of the 3 types of heat transfer, this scenario would be most likely to be an example of convection.
Convection is where the transferring of heat is resulted through the movements of fluid, but in this case it is air. What happens is that when a part of the whole mass of air is heated, the hotter air rises and the cooler air descends and takes place of the hotter air before it was heated. Then, the cooler air becomes hotter and the hotter air before becomes the cooler air of both, which then results to the repeat of the exchange of places. This creates a motion until the whole mass has achieved mutual temperature, the heat source has stopped or extinguished, or there is a shift of temperature.
Answer:
25.08m/s
Explanation:
mgh1 + 0.5mv1² = mgh2 + 0.5mv2²
h1 = 0m
v1 = u
h2 = 5m
v2 = 23m/s
putting the values into the formula above;
m(10)(0) + 0.5m(u²) = m(10)(5) + 0.5m(23²)
0 + 0.5mu² = 50m + 264.5m
0.5mu² = 314.5m
dividing through by m
0.5u² = 314.5
u² = 629
u = <u>2</u><u>5</u><u>.</u><u>0</u><u>8</u><u>m</u><u>/</u><u>s</u>
<u>Theref</u><u>ore</u><u>,</u><u> </u><u>the</u><u> </u><u>init</u><u>ial</u><u> </u><u>speed</u><u> </u><u>"</u><u>u</u><u>"</u><u> </u><u>=</u><u> </u><u>2</u><u>5</u><u>m</u><u>/</u><u>s</u>
Answer:
.5 units north
<em><u>or</u></em>
55 ft/minutes(<em>squared</em>) north
Explanation:
.5 is what your info gives me but if i take that the average distance a block is it is 660ft than the answer is 55.
Answer:
proportional to the current in the wire and inversely proportional to the distance from the wire.
Explanation:
The magnetic field produced by a long, straight current-carrying wire is given by:

where
is the vacuum permeability
I is the current intensity in the wire
r is the distance from the wire
From the formula, we notice that:
- The magnitude of the magnetic field is directly proportional to I, the current
- The magnitude of the magnetic field is inversely proportional to the distance from the wire, r
Therefore, correct option is
proportional to the current in the wire and inversely proportional to the distance from the wire.