When an object in simple harmonic motion is at its maximum displacement, its <u>acceleration</u> is also at a maximum.
<u><em>Reason</em></u><em>: The speed is zero when the simple harmonic motion is at its maximum displacement, however, the acceleration is the rate of change of velocity. The velocity reverses the direction at that point therefore its rate of change is maximum at that moment. thus the acceleration is at its maximum at this point</em>
<em />
Hope that helps!
122
...................................................................,.......,..................................
Answer:
I = 97.2 10³⁶ kg m²
Explanation:
The moment of inertia of a body the expression of inertia in the rotational movement and is described by the expression
I = ∫ r² dm
In this problem we are told to use the moment of inertia of a uniform sphere, the expression of this moment of inertia is
I = 2/5 M r²
where m is the mass of the earth and r is the radius of the earth.
Let's calculate
I = 2/5 5.97 10²⁴ (6.38 10⁶)²
I = 97.2 10³⁶ kg m²
Force = mass × acceleration = kg × m/s^2 = Newton
Well,
Typically, a substance is under 1 atmosphere of pressure, or 1 atm. More than 1 atm means there is more pressure than that which the earth's atmosphere exerts on an object near the surface of the earth.
If a liquid is given enough energy, and the atmospheric pressure remains constant, the liquid will turn into a gas. In the case of water, it will turn into water vapor at 100 °C. However, if you increase the pressure to greater than 1 atm, the water will be pushed together, keeping it liquid.