Answer:
a) 1.875 volts
b) 5.86 W
Explanation:
Given data:
transmission line resistance = 0.30/cable
power of the generator = 250 kW
if Vt = 80 kV
<u>a) Determine the decrease V along the transmission line </u>
Rms current in cable = P / Vt = 250 / 80 = 3.125 amps
hence the rms voltage drop ( Δrmsvoltage )
Δrmsvoltage = Irms* R = 3.125 * 2 * 0.30 =<em> 1.875 volts </em>
<u>b) Determine the rate Pd at which energy is dissipated in line as thermal energy </u>
Pd = 
= 3.125^2 * 2* 0.30 = <em>5.86 W</em>
Answer:
Explanation:
Given
Mass of ball is M
Height of incline is H
Here conservation of energy will provide the velocity at bottom
Energy at top of incline plane 
Energy at bottom=Kinetic energy+Rotational energy
Assuming Pure rolling we can write

where
=velocity of ball
=angular velocity of ball
R=radius of ball

where I=moment of inertia of ball



Now ,


Answer:
Moc = -613.25 [lb*in]
Explanation:
Este problema se puede resolver mediante la mecánica vectorial, es decir se realizara un analisis de vectores.
Primero se calculara el momento de la fuerza F_AB con respecto al punto O, debemos recordar que el momento con respecto a un punto se define como el producto cruz de la distancia por la fuerza.
(producto cruz)
Necesitamos identificar los puntos:
O (0,0,0) [in]
A (12,0,0) [in]
B (0, 24,8) [in]
C (12,24,0) [in]
![r_{A/O}=(12,0,0) - (0,0,0)\\r_{A/O} = 12 i + 0j+0k [in]\\AB = (0,24,8) - (12,0,0)\\AB = -12i+24j+8k [in]\\[LAB]=\frac{-12i+24j+8k}{\sqrt{(12)^{2} +(24)^{2} +(8)^{2} } }\\ LAB=-\frac{3}{7} i+\frac{6}{7}j+\frac{2}{7}k](https://tex.z-dn.net/?f=r_%7BA%2FO%7D%3D%2812%2C0%2C0%29%20-%20%280%2C0%2C0%29%5C%5Cr_%7BA%2FO%7D%20%3D%2012%20i%20%2B%200j%2B0k%20%5Bin%5D%5C%5CAB%20%3D%20%280%2C24%2C8%29%20-%20%2812%2C0%2C0%29%5C%5CAB%20%3D%20-12i%2B24j%2B8k%20%5Bin%5D%5C%5C%5BLAB%5D%3D%5Cfrac%7B-12i%2B24j%2B8k%7D%7B%5Csqrt%7B%2812%29%5E%7B2%7D%20%2B%2824%29%5E%7B2%7D%20%2B%288%29%5E%7B2%7D%20%7D%20%7D%5C%5C%20LAB%3D-%5Cfrac%7B3%7D%7B7%7D%20i%2B%5Cfrac%7B6%7D%7B7%7Dj%2B%5Cfrac%7B2%7D%7B7%7Dk)
El ultimo vector calculado corresponde al vector unitario (magnitud = 1) de AB. El vector fuerza corresponderá al producto del vector unitario por la magnitud de la fuerza = 200 [lb].
![F_{AB}=-\frac{600}{7} i +\frac{1200}{7}j+\frac{400}{7} k [Lb]](https://tex.z-dn.net/?f=F_%7BAB%7D%3D-%5Cfrac%7B600%7D%7B7%7D%20i%20%2B%5Cfrac%7B1200%7D%7B7%7Dj%2B%5Cfrac%7B400%7D%7B7%7D%20k%20%5BLb%5D)
De esta manera realizando el producto cruz tenemos

![M_{O}=0i-685.7j+2057.1k [Lb*in]](https://tex.z-dn.net/?f=M_%7BO%7D%3D0i-685.7j%2B2057.1k%20%5BLb%2Ain%5D)
Para calcular el momento con respecto a la diagonal OC, necesitamos el vector unitario de esta diagonal.
![OC = (12,24,0)-(0,0,0)\\OC= 12i+24j+0k[Lb]\\LOC = \frac{12i+24j+0k}{\sqrt{(12)^{2} +(24)^{2} +(0)^{2} } } \\LOC=\frac{12}{\sqrt{720}}i+\frac{24}{\sqrt{720}}j +0k](https://tex.z-dn.net/?f=OC%20%3D%20%2812%2C24%2C0%29-%280%2C0%2C0%29%5C%5COC%3D%2012i%2B24j%2B0k%5BLb%5D%5C%5CLOC%20%3D%20%5Cfrac%7B12i%2B24j%2B0k%7D%7B%5Csqrt%7B%2812%29%5E%7B2%7D%20%2B%2824%29%5E%7B2%7D%20%2B%280%29%5E%7B2%7D%20%7D%20%7D%20%5C%5CLOC%3D%5Cfrac%7B12%7D%7B%5Csqrt%7B720%7D%7Di%2B%5Cfrac%7B24%7D%7B%5Csqrt%7B720%7D%7Dj%20%20%2B0k)
El vector con respecto al eje OC, es igual al producto punto del momento en el punto O por el vector unitario LOC
![M_{OC}=L_{OC}*M_{O}\\M_{OC}=(\frac{12}{\sqrt{720}}i +\frac{24}{\sqrt{720}} j+0k )* (0i-685.7j+2057.1k)\\M_{OC}= -613.32[Lb*in]](https://tex.z-dn.net/?f=M_%7BOC%7D%3DL_%7BOC%7D%2AM_%7BO%7D%5C%5CM_%7BOC%7D%3D%28%5Cfrac%7B12%7D%7B%5Csqrt%7B720%7D%7Di%20%2B%5Cfrac%7B24%7D%7B%5Csqrt%7B720%7D%7D%20j%2B0k%20%29%2A%20%280i-685.7j%2B2057.1k%29%5C%5CM_%7BOC%7D%3D%20-613.32%5BLb%2Ain%5D)
Answer:
1.Oxidation - reduction reactions and proton pumping
2. Phosphorylation reactions and proton pumping
Explanation:
In oxidative phosphorylation, electrons are transferred from donors to acceptors, that is redox reaction.
These redox reactions release energy, which is used to form ATP. In eukaryotes, these redox reactions are carried out by protein complexes within cell's mitochondria, whereas, in prokaryotes, these proteins are located in the cells' intermembrane space. These linked sets of proteins are called electron transport chains.