Answer:
H = 1/2 g t^2 where t is time to fall a height H
H = 1/8 g T^2 where T is total time in air (2 t = T)
R = V T cos θ horizontal range
3/4 g T^2 = V T cos θ 6 H = R given in problem
cos θ = 3 g T / (4 V) (I)
Now t = V sin θ / g time for projectile to fall from max height
T = 2 V sin θ / g
T / V = 2 sin θ / g
cos θ = 3 g / 4 (T / V) from (I)
cos θ = 3 g / 4 * 2 sin V / g = 6 / 4 sin θ
tan θ = 2/3
θ = 33.7 deg
As a check- let V = 100 m/s
Vx = 100 cos 33.7 = 83,2
Vy = 100 sin 33,7 = 55.5
T = 2 * 55.5 / 9.8 = 11.3 sec
H = 1/2 * 9.8 * (11.3 / 2)^2 = 156
R = 83.2 * 11.3 = 932
R / H = 932 / 156 = 5.97 6 within rounding
Answer:
a. Speed = 342.5 meters per seconds.
b. Wavelength = 2.0 meters
Explanation:
Given the following data;
Distance = 100m
Time = 292 milliseconds to seconds = 292/1000 = 0.292 seconds
Frequency = 171 Hz
a. To find the speed of sound in air;
Speed = distance/time
Speed = 100/0.292
Speed = 342.5 m/s
b. To find the wavelength;
Wavelength = speed/frequency
Wavelength = 342.5/171
Wavelength = 2.0 m
the sodium chloride will be a crystal
it will have a giant crystal lattice
Answer:
Less than
Explanation:
Speed of sound increases with density of the medium. Since wood is less dense than water, the speed of sound is lower in wood.
Answer:
because metals a good conductor of electricity.
Explanation:
Metal particles are held together by strong metallic bonds, which is why they have high melting and boiling points. The free electrons in metals can move through the metal, allowing metals to conduct electricity.