Answer:
v = 7.67 m/s
Explanation:
Given data:
horizontal distance 11.98 m
Acceleration due to gravity 9.8 m/s^2
Assuming initial velocity is zero
we know that

solving for t
we have

substituing all value for time t

t = 1.56 s
we know that speed is given as


v = 7.67 m/s
Answer:
Explanation:
a ) Let let the frictional force needed be F
Work done by frictional force = kinetic energy of car
F x 107 = 1/2 x 1400 x 35²
F = 8014 N
b )
maximum possible static friction
= μ mg
where μ is coefficient of static friction
= .5 x 1400 x 9.8
= 6860 N
c )
work done by friction for μ = .4
= .4 x 1400 x 9.8 x 107
= 587216 J
Initial Kinetic energy
= .5 x 1400 x 35 x 35
= 857500 J
Kinetic energy at the at of collision
= 857500 - 587216
= 270284 J
So , if v be the velocity at the time of collision
1/2 mv² = 270284
v = 19.65 m /s
d ) centripetal force required
= mv₀² / d which will be provided by frictional force
= (1400 x 35 x 35) / 107
= 16028 N
Maximum frictional force possible
= μmg
= .5 x 1400 x 9.8
= 6860 N
So this is not possible.
Answer:
4
Explanation:
From the question given above, the following data were obtained:
Effort (E) = 80 lbs
Load (L) = 320 lbs
Mechanical advantage (MA) =?
Mechanical advantage is simply defined as the ratio of load to effort. Mathematically, it is expressed as:
Mechanical advantage = Load / Effort
MA = L / E
With the above formula, we can obtain the mechanical advantage as illustrated below:
Effort (E) = 80 lbs
Load (L) = 320 lbs
Mechanical advantage (MA) =?
MA = L / E
MA = 320 / 80
MA = 4
Thus, the mechanical advantage is 4
Explanation:
Coefficient of kinetic friction is the resistive force that opposes the motion of a body as it moves and is in contact with another body.
It is found by dividing the frictional force by the normal force.
- Friction is a force that opposes motion.
- Static friction is for bodies that are not in motion
- Kinetic friction is for moving bodies.
Answer: 3- Large cells of rising and sinking gasses
Explanation: Hotter gas coming from the radiative zone expands and rises through the convective zone. It can do this because the convective zone is cooler than the radiative zone and therefore less dense. As the gas rises, it cools and begins to sink again. As it falls down to the top of the radiative zone, it heats up and starts to rise. This process repeats, creating convection currents and the visual effect of boiling on the Sun's surface.