The mass of the (elevator + person) is (2,000 kg + 60 kg) = 2,060 kg .
The weight is (mass x gravity) = (2,060 x 10) = 20,600 newtons
Work = (force x distance) = (20,600 newtons x 24m) = <em>494,400 joules</em>
The speed, acceleration, and how much time it takes don't make any
difference, unless you want the average power during the lift.
Power = (work)/(time) =
494,000 J / (24/4 m) =
494,000 J / 6 sec = <em><u>82,400 watts</u></em> wow !
Answer:
2 meters
Explanation:
when you step away from a reflection you get farther
Fam im just answering a question so i can get mine answered im sorry im no help but i think its gravity
Answer:
The force of friction acting on block B is approximately 26.7N. Note: this result does not match any value from your multiple choice list. Please see comment at the end of this answer.
Explanation:
The acting force F=75N pushes block A into acceleration to the left. Through a kinetic friction force, block B also accelerates to the left, however, the maximum of the friction force (which is unknown) makes block B accelerate by 0.5 m/s^2 slower than the block A, hence appearing it to accelerate with 0.5 m/s^2 to the right relative to the block A.
To solve this problem, start with setting up the net force equations for both block A and B:

where forces acting to the left are positive and those acting to the right are negative. The friction force F_fr in the first equation is due to A acting on B and in the second equation due to B acting on A. They are opposite in direction but have the same magnitude (Newton's third law). We also know that B accelerates 0.5 slower than A:

Now we can solve the system of 3 equations for a_A, a_B and finally for F_fr:

The force of friction acting on block B is approximately 26.7N.
This answer has been verified by multiple people and is correct for the provided values in your question. I recommend double-checking the text of your question for any typos and letting us know in the comments section.
80000 Joule is the change in the internal energy of the gas.
<h3>In Thermodynamics, work done by the gas during expansion at constant pressure:</h3>
ΔW = -pdV
ΔW = -pd (V₂ -V₁)
ΔW = - 1.65×10⁵ pa (0.320m³ - 0.110m³)
= - 0.35×10⁵ pa.m³
= - 35000 (N/m³)(m³)
= -35000 Nm
ΔW = -35000 Joule
Therefore, work done by the system = -35000 Joule
<h3>Change in the internal energy of the gas,</h3>
ΔV = ΔQ + ΔW
Given:
ΔQ = 1.15×10⁵ Joule
ΔW = -35000 Joule
ΔU = 1.15×10⁵ Joule - 35000 Joule
= 80000 Joule.
Therefore, the change in the internal energy of the gas= 80000 Joule.
Learn more about thermodynamics here:
brainly.com/question/14265296
#SPJ4