The mass lost in the nuclear reaction is all converted to energy.
Answer:
The Kinetic energy and mass are _directly_ proportional.
Explanation:
We know that Kinetic Energy is basically termed as the capacity of a body to do work.
Kinetic energy is often used to associate with moving objects, therefore, K.E is normally termed as the energy of motion.
The formula of K.E of an object of mass and velocity is defined
K.E = 1/2mv²
From the formula, it is clear that K.E is directly proportional to its mass and also directly proportional to the square of its velocity.
For example,
If A toy plane with a mass of 10 kg is flying at 20 m/s. Its K.E will be:
K.E = 1/2mv²
= 1/2(10)(20)²
= 1/2(10)(400)
= 5(400)
= 2000 J
Now, let suppose, if we double the mass of a toy plane i.e.
m = 20 kg
so
K.E = 1/2mv²
= 1/2(20)(20)²
= 1/2(20)(400)
= 10(400)
= 400 J
Therefore, the K.E is doubled when doubled the mass.
Therefore, the Kinetic energy and mass are _directly_ proportional.
Because the sun evaporates the water out of the clothes
Answer:
First law: kinetic energy is used to turn an electric generator
Second law: some thermal energy is lost to the environment as it travels through the system
Explanation:
The first law of thermodynamics is known as the law of conservation of energy. It states that energy can neither be created nor destroyed but can only be transferred or changed from one form to another. When thermal energy is used to generate electricity, the kinetic energy of the steam is used to turn the electric generator (thereby producing electrical energy).
The second law of thermodynamics states that energy transfer or transformation leads to an increase in entropy resulting in the loss of energy. This law also states that as energy is transferred or transformed, some is lost in a form that is unusable. When thermal energy is used to generate electricity, some of the thermal energy is lost to the environment as it travels through the system.