Answer:
71 % of the earth's surface is covered in water
Answer:
Fc = 19.2 N
Explanation:
In this case, the force of the Honda over the rock, is a centripetal force. Then, you have:

m: mass of the rock = 600g = 0.6 kg
v: tangential velocity of the Honda = 4m/s
r: radius of the Honda = 50cm = 0.5m
You replace the values of m, r and v in the equation for Fc:

hence, the force has a magnitude of 19.2 N
If the rock would have more mass the centripetal force would be higher
Start with what the paragraph is about and put it basically in your own words
A radio station broadcast on a frequency of 3.7 mhz what is the energy of the radio wave A radio station broadcasts its programmes at a wavelength of 500 m. Find the frequency of the radiowaves transmitted by the radio station, if the speed of radiowaves in air is 3 x 108 m/s. Ans: 6 x 10 Hz
<h3>What is
radio station ?</h3>
Radio broadcasting is the act of sending audio (sound), occasionally together with accompanying metadata, across radio waves to radio receivers used by the general public. Unlike satellite radio, which uses a satellite in Earth's orbit, terrestrial radio broadcasting uses a land-based radio station to transmit radio waves. The listener needs a broadcast radio receiver to hear the material (radio). A radio network with which stations frequently have affiliations provide content in a standard radio format, whether through broadcast syndication, simulcasting, or both. Radio stations use a variety of modulations to transmit their signals, including FM (frequency modulation), which is an older analog audio standard, and AM (amplitude modulation).
To learn more about radio station from the given link:
brainly.com/question/26439029
#SPJ4
Given:
u = 0, initial speed (sprinter starts from rest)
v = 11.5 m/s, final speed
s = 15 m, distance traveled to attain final speed.
Let
a = average acceleration,
t = time taken to attain final speed.
Then
v² = u² + 2as
or
(11.5 m/s)² = 2*(a m/s²)*(15 m)
a = 11.5²/(2*15) = 4.408 m/s²
Also
v = u +a t
or
(11.5 m/s) = (4.408 m/s²)*(t s)
t = 11.5/4.408 = 2.609 s
Answer:
The average acceleration is 4.41 m/s² (nearest hundredth).
The time required is 2.61 s (nearest hundredth).