Answer:
1.023 J / g°C
Explanation:
Mass, m = 37.9 g
Temperature increase (change) = 25.0°C
Heat = 969 J
Specific heat capacity , c= ?
The relationship between these quantities is given by the equation;
H = mcΔT
c = H / mΔT
c = 969 / (37.9 * 25)
c = 969 / 947.5 = 1.023 J / g°C
You would be most likely to use a slicing machine if you were using the <u>icebox </u>method to produce cookies.
In the icebox method a type of cookie in which the dough is made, rolled into a stick, and refrigerated until the dough hardens. The dough can be removed from the refrigerator, cut into individual pieces, and then baked. The rest of the dough is returned to the refrigerator until needed.
Icebox method, also known as refrigerator cookies, are sliced and baked cookies. The dough is formed into logs, chilled in the refrigerator (also called an icebox), sliced , and then baked.
Learn more about the Icebox method here,
https://brainly.in/question/1513677
#SPJ4
Answer:
Nutrition has a significant impact on numerous reproductive functions including hormone production, folliculogenesis, fertilization, and early embryonic development
Explanation:
This intimate association is because reproductive processes are energetically expensive, and the brain must temper the fertility of individuals to match nutritional availability.Reproduction function in mammals can be inhibited when food availability is low or when increased energy demands are not met by compensatory food intake such as in short-term and chronic withdrawal of nutrients.This very close alignment with the food supply is more important in females, where pregnancy and lactation are linked to considerable energetic expenses, needed for the nurture of embryos and newborns. In fact, her reproductive outcome can be seriously altered and even life threatening to both the mother and offspring when nutritional imbalance occurs. In order to keep constant body energy stores, in mammals, a series of homeostatic events leading to maintenance of energy balance are activate when a state of energy scarcity or abundance occurs.
At the boiling point, the vapor pressure of a liquid is equal to the atmospheric pressure.